а) модуль числа а это само число а, если оно взято со знаком + и число !а!=-а, если а число отрицательное, т.е. взято со знаком -. Отсюда можно сделать вывод что модуль никогда не может быть равен отрицательному числу, абсолятное значение всегда положительно, поэтому единственное число, удоволтворяющее !x!=-x это 0, поэтому под буквой а можешь отметить только 0
б) Во втором случае этому уравнению будет эквивалентна система уравнений вида
x+2=x+2 - тождественно верно
x+2=-(x+2)-решаем
x+2=-x-2
x+x+2+2=0
2x+4=0
2x=-4
x=-2
Значит все точки числовой прямой начиная с x=-2 и в положительнную сторону будут удоволетворять уравнению, отсюда ответ будет вся числовая прямая начиная с -2 и больше
1. Сначала требовалось 12 автомашин
2. Фактически использовали 15 автомашин
3. На каждой автомашине планировалось перевозить 5 тонн
Объяснение:
пусть
x - изначальная грузоподъемность одной машины
(т.е. то, сколько тонн груза планировались перевозить на каждой машине изначально)
(x-1) - фактическая грузоподъемность одной машины
(т.е. то, сколько тонн груза фактически перевозили на каждой машине)
y - количество машин, которое требовалось изначально
(y+3) - количество машин, которое потребовалось фактически
по условию: надо перевести 60 тонн,
грузоподъемность × количество машин = масса перевозимого груза
составим систему:
x × y = 60 - изначально
(x-1)×(y+3) = 60 - фактически
решаем систему:
из первого уравнения: x = 60/y
(по условию: y не может быть равен 0)
подставим во второе уравнение:
(60/y - 1) × (y+3) = 60
60 + 180/y - y - 3 = 60
180/y - y - 3 =0
-y^2 -3 × y + 180 = 0
y^2 + 3 × y - 180 = 0
решаем квадратное уравнение:
корни: 12, -15
-15 - отрицательная величина, не подходит по условию
значит
y = 12
тогда
x = 60/12 = 5
5^2 = 25
(-6)^3 = - 216
25^2 = 625
- 7^2 = - 49
8^3 = 512
5^4 = 625
0^8 = 0