Пусть х км в час - собственная скорость катера, у км в час - скорость течения реки. Тогда (х+у) км в час - скорость катера по течению, (х-у) км в час - скорость катера против течения.
3·(х+у) км путь катера по течению за 3 часа. 5·(х-у) км путь катера против течения за 5 часов. Всего по условию задачи 92 км. Первое уравнение: 3·(х+у) + 5·(х-у) = 92;
5·(х+у) км путь катера по течению за 5 часов. 6·(х-у) км путь катера против течения за 6 часов. По условию задачи 5·(х+у) больше 6·(х-у) на 10. Второе уравнение: 5·(х+у) - 6·(х-у) = 10.
Получена система двух уравнений с двумя переменными. {3·(х+у) + 5·(х-у) = 92 ⇒{3x+3y+5x-5y=92 ⇒ { 8x-2y=92 ⇒ {4x-y=46 {5·(х+у) - 6·(х-у) = 10 ⇒{5x+5y-6x+6y=10 ⇒ {-x+11y=10 ⇒ {x=11y-10
{4·(11y-10)-y=46 {x=11y-10
{44y-40-y=46 {x=11y-10
{43y=86 {x=11y-10
{y=2 {x=11·2-10=12
О т в е т. 12 км в час - собственная скорость катера, 2 км в час - скорость течения реки.
Пусть х км в час - собственная скорость катера, у км в час - скорость течения реки. Тогда (х+у) км в час - скорость катера по течению, (х-у) км в час - скорость катера против течения.
3·(х+у) км путь катера по течению за 3 часа. 5·(х-у) км путь катера против течения за 5 часов. Всего по условию задачи 92 км. Первое уравнение: 3·(х+у) + 5·(х-у) = 92;
5·(х+у) км путь катера по течению за 5 часов. 6·(х-у) км путь катера против течения за 6 часов. По условию задачи 5·(х+у) больше 6·(х-у) на 10. Второе уравнение: 5·(х+у) - 6·(х-у) = 10.
Получена система двух уравнений с двумя переменными. {3·(х+у) + 5·(х-у) = 92 ⇒{3x+3y+5x-5y=92 ⇒ { 8x-2y=92 ⇒ {4x-y=46 {5·(х+у) - 6·(х-у) = 10 ⇒{5x+5y-6x+6y=10 ⇒ {-x+11y=10 ⇒ {x=11y-10
{4·(11y-10)-y=46 {x=11y-10
{44y-40-y=46 {x=11y-10
{43y=86 {x=11y-10
{y=2 {x=11·2-10=12
О т в е т. 12 км в час - собственная скорость катера, 2 км в час - скорость течения реки.
X1=25-27/4=-2/4=-1/2
2)D=841-4×2×99=841-792=49=7
x1=29-7/4=22/4=5,5
x2=29+7/4=36/4=9
3) D=121-4×4×(-45)=121+720=841=29
x1=-11+29/8=18/8=9/4
x2=-11-29/8=-40/8=5