19 ч 20 мин = 19 1/3 ч 19 1/3 - 9 = 10 1/3 (ч) - время в пути. 10 1/3 ч = 31/3 ч Пусть х км/ч - собственная скорость баржи, тогда (х + 3) км/ч скорость баржи по течению реки, (х - 3) км/ч - скорость баржи против течения реки.
Второй корень не подходит, значит, собственная скорость баржи 15 км/ч. 15 - 3 = 12 (км/ч) - скорость баржи вверх по реке. 60 : 12 = 5 (ч) - шла баржа от пункта А до пункта В. 9 + 5 = 14 (ч) - время, в которое баржа прибыла в пункт В. ответ: в пункт В баржа прибыла в 14 часов.
Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена
Дискриминант больше нуля - два корня
Дискриминант равен нулю. В уравнении 1 корень
Дискриминант меньше нуля, значит нет действительных корней
2)
Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать. В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.
В нашем случае функция не имеет смысла, при х=-1 и х=0
y=x²-5x+6
y=(x-2,5)²-0,25
Парабола ,ветви вверх,вершина ((2,5;0,25),x=2,5-ось симметрии.
Точки пересечения с осями (2;0),(3,0),(0;6)
Убывает (-∞;2,5),возрастает (2,5;∞)
y>0 x∈(-∞;2) U (3;∞)
y<0 x∈(2;3)
ymin=-0,25
2
(√7-4√3 + √7+4√3)²=(√7-4√3)²+2(√7-4√3)(√7+4√3)+(√7+4√3)²=
=7-8√21+48+14-96+7+5√21+48=28