Раз действительных корней нет, то дискриминант отрицательный: b²-4ac<0 b²<4ac (1) Квадрат любого числа есть неотрицательное число, поэтому 4ac>0 Значит, а и с одинакового знака (оба или +, или оба -) 1) Рассмотрим первый случай: a>0: c>0 По условию a+b+c<0. Сумма трех положительных чисел всегда положительна. Значит b<0. Причем |b|>a+c. Возводим в квадрат: b²>(-a-c)² b²>a²+2ac+c². С учетом выражения (1), получаем a²+2ac+c²<b²<4ac a²+2ac+c²<4ac a²+2ac+c²-4ac<0 a²-2ac+c²<0 (a-b)²<0 Противоречие! Квадрат не может быть отрицательным, значит, рассматриваемый нами случай (a>0: c>0) невозможен. И остается только второй случай. 2) а и с оба отрицательны. ответ: число с имеет знак минус.