З'ясуємо, як знайти область визначення деяких функцій, заданих формулою.
1. Якщо функція — многочлен, то вона існує при будь-яких значеннях аргумента, тобто її область визначення — всі дійсні числа.
2. Якщо функція задана формулою, яка містить аргумент у знаменнику дробу, то до області визначення функції входять всі дійсні числа, крім тих, які перетворюють знаменник в нуль.
3. Якщо функція задана формулою, яка містить арифметичний квадратний корінь, то до області її визначення входять всі дійсні числа, при яких підкореневий вираз набуває невід'ємних значень.
Область значень функції (множина значень) - усі значення, яких набуває функція.
Функція є парною - якщо для будь-якого х з області визначення функції виконується рівність f(x)=f(-x)
Функція є непарною - якщо для будь-якого х з області визначення функції виконується рівність f(-x)=-f(x)
Ясно, что одно неизвестное число = отрицательное, так как их произведение дано с отрицательным знаком. Составим систему:
|х-у=-9,7
|ху= -12,3
выразим х из первого уравнения.
х=у-9,7
Подставим его во второе уравнение.
(у-9,7)у=-12,3
у²- 9,7у + 12,3=0 Решаем квадратное уравнение
D (Дискриминант уравнения) = b 2 - 4ac = 44.89
Дискриминант больше нуля (D > 0) => Уравнение имеет 2 вещественных решения (корня)
√D = 6.7
у1=8,2
у2=1,5
Из этих значений у найдем значения х
х-у= - 9,7
х1= 8,2 -9,7= -1,5
х2= 1,5 -9,7= -8,2
Проверим:
ху=
х1*у1= -1,5*8,2= -12,3
х2*у2= - -8,2*1,5= -12,3
х-у=2
2x-3y=-1
х=2+у
2(2+у)-3у=-1
4+2у-3у+1=0
у=5
х=2+5=7