М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
020910
020910
22.07.2021 00:58 •  Алгебра

Знайти значення виразу для значень змынних 3с+4d,якщо c=7 та d = -4; c = -1,4 та d = 3,7

👇
Ответ:
3*7 + 4*(-4) = 21 - 16= 5
3*(-1,4) + 4*3,7 = -4,2 + 14,8 = 10,6
4,4(33 оценок)
Открыть все ответы
Ответ:
Magistr126
Magistr126
22.07.2021

Объяснение:

Мы докажем это равенство по индукции. Но сначала преобразуем правую часть равенства к более удобному для нас виду:

\frac{1}{12} (2n^6+6n^5+5n^4-n^2)=\frac{n^2(2n^4+6n^3+5n^2-1)}{12} =\frac{n^2(2n^4+2n^3+4n^3+4n^2+n^2+n-n-1)}{12} =\frac{n^2(2n^3(n+1)+4n^2(n+1)+n(n+1)-(n+1))}{12} =\frac{n^2(n+1)(2n^3+4n^2+n-1)}{12} =\\=\frac{n^2(n+1)(2n^3+2n^2+2n^2+2n-n-1)}{12} =\frac{n^2(n+1)(2n^2(n+1)+2n(n+1)-(n+1))}{12}=\frac{n^2(n+1)^2(2n^2+2n-1)}{12}А вот теперь применим индукцию. Легко проверить, что для n=1 равенство верно.

Теперь предположим что равенство верно для n=k:

1^5+2^5+...+k^5=\frac{k^2(k+1)^2(2k^2+2k-1)}{12}

Прибавив к обеим частям равенства (k+1)^5 получим:

1^5+2^5+...+k^5+(k+1)^5=\frac{k^2(k+1)^2(2k^2+2k-1)}{12}+(k+1)^5

Займёмся преобразованием правой части этого равенства:

\frac{k^2(k+1)^2(2k^2+2k-1)}{12}+(k+1)^5=(k+1)^2\bigg(\frac{k^2(2k^2+2k-1)}{12} +(k+1)^3\bigg)=\\=\frac{(k+1)^2}{12} \big(k^2(2k^2+2k-1)+12(k^3+3k^2+3k+1)\big)=\\=\frac{(k+1)^2}{12}\big(2k^4+14k^3+35k^2+36k+12\big)=\frac{(k+1)^2(2k^4+4k^3+10k^3+20k^2+15k^2+30k+6k+12)}{12}=\\=\frac{(k+1)^2(2k^3(k+2)+10k^2(k+2)+15k(k+2)+6(k+2))}{12}=\frac{(k+1)^2(k+2)(2k^3+10k^2+15k+6)}{12}=\\=\frac{(k+1)^2(k+2)(2k^3+4k^2+6k^2+12k+3k+6)}{12}=\frac{(k+1)^2(k+2)(2k^2(k+2)+6k(k+2)+3(k+2))}{12}==\frac{(k+1)^2(k+2)^2(2k^2+6k+3)}{12}=\frac{(k+1)^2(k+2)^2(2(k+1)^2+2k+1)}{12}=\frac{(k+1)^2(k+2)^2(2(k+1)^2+2(k+1)-1)}{12}Таким образом

1^5+2^5+...+k^5+(k+1)^5=\frac{(k+1)^2(k+2)^2(2(k+1)^2+2(k+1)-1)}{12}

То есть если равенство верно для произвольного n=k, то оно также оказывается верным и для n=k+1. По индукции заключаем верность равенства для любого натурального n.

Если же вас интересует каким можно вывести формулу, которую мы только что доказали - напишите мне в ЛС.

4,5(84 оценок)
Ответ:
SBusic
SBusic
22.07.2021

Приклад:

Розв'язати систему рівнянь:    {x−2y=3,5x+y=4.  

1) З першого рівняння системи виражаємо змінну  x  через змінну  y.  

 

Отримуємо:  x−2y=3,x=3+2y;  

 

2)  Підставимо отриманий вираз замість змінної  x  у друге рівняння системи:

 

5⋅x+y=4,5⋅(3+2y)+y=4;  

 

3)  Розв'яжемо утворене рівняння з однією змінною, знайдемо  y:  

 

5⋅(3+2y)+y=4,15+10y+y=4,10y+y=4−15,11y=−11,|:11y=−1¯¯¯¯¯¯¯¯¯¯¯.  

 

4)  Знайдемо відповідне значення змінної  x,  підставивши значення змінної  y,  у вираз знайдений на першому кроці:

 

  x=3+2⋅y,x=3+2⋅(−1),x=3−2,x=1¯¯¯¯¯¯¯¯.  

5) Відповідь:  (1;−1)  .

Объяснение:

это решить линейные уравнения без черчежей

4,5(47 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ