М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Среднячёк
Среднячёк
08.06.2020 12:10 •  Алгебра

Решить уравнения: 1) ( 2/3)ˣ ( 9/16)ˣ = 3/8 2) (3/5)ˣ (10/15)ˣ =2/5

👇
Ответ:
1)
(2/3)^x (9/16)^x = 3/8
(2*9/(3*16))^x = 3/8
(3/8)^x = 3/8
x=1
2)
(3/5)^x (10/15)^x = 2/5
(3*18/(5*15))^x = 2/5
(2/5)^x = 2/5
x=1
4,5(31 оценок)
Открыть все ответы
Ответ:
vanyad09
vanyad09
08.06.2020

0.3 м на 0.2 м это 30 см на 20 см

если начнет выкладывать вдоль длинной 30 см стороны , то получит 30/3 = 10 наклеек

и 6 рядов наклеек вверх до 18 см итого

6*10 = 60 наклеек

а полоса 2 на 30 ничем не наклеится

также, если начнет выкладывать вдоль короткой 20см стороны, получит 6 наклеек и вверх на 30 см еще 10 рядов

итого 6*10 = 60

хотя если посчитать площадь 30*20 = 600 и поделить на 3*3 = 9 получим  66 штук

Только не стоит забывать, что наклейки 3 на 3 не режутся и за края не выходят, только целиком на площадь картона

ответ 60

4,4(82 оценок)
Ответ:
arinuchik
arinuchik
08.06.2020

1. f(x)=2+\sin 4x\\\\F(x)=2x-\frac{\cos4x}{4}+C.\\\\F(\frac{\pi}{4})=-3\pi;\\\\ 2\cdot\frac{\pi}{4}-\frac{\cos\pi}{4}+c=-3\pi;\\\\\frac{\pi}{2}+\frac{1}{4}+c=-3\pi \\\\ C=-3\pi-\frac{\pi}{2}-\frac{1}{4}\\\\C=-\frac{7\pi}{2}-\frac{1}{4}

Заданная первообразная - F(x)=2x-\frac{\cos4x}{4}-\frac{7\pi}{2}-\frac{1}{4}

F(\frac{7\pi}{4})=2\cdot\frac{7\pi}{4}-\frac{\cos7\pi}{4}-\frac{7\pi}{2}-\frac{1}{4}=\frac{7\pi}{2}+\frac{1}{4}-\frac{7\pi}{2}-\frac{1}{4}=0.

ОТВЕТ: 0.

2. f(x)=e^x+2x+1, \max_{[0;2]}F(x)=e^2.\\\\F(x)=e^x+x^2+x+C.

График данной первообразная вне зависимости от значения константы на заданном отрезке монотонно возрастает. Поэтому максимальное значение первообразная принимает на правом конце отрезка [0; 2] - т.е. при х = 2.

F(2)=e^2+2^2+2+C=e^2+6+C=e^2;\\\\e^2+6+C=e^2\\\\6+C=0\Rightarrow C=-6.

Заданная первообразная - F(x)=e^x+x^2+x-6.

Соответственно все из того же факта монотонного возрастания следует и то, что минимальное значение первообразная принимает на левом конце отрезка [0; 2] - т.е. при х = 0.

F(0)=e^0+0^2+0-6=1-6=-5.

ОТВЕТ: -5.

3. f(x)=-\frac{6}{x^2}=-6x^{-2}, x\in(-\infty; 0) \\\\F(x)=-6\cdot\frac{x^{-2+1}}{-2+1}+C=-6\cdot\frac{x^{-1}}{-1}+C=\frac{6}{x}+C.

По условию F(-2)=-3;

\frac{6}{-2}+C=-3;\\\\ -3+C=-3\Rightarrow C=0.

Заданная первообразная - F(x)=\frac{6}{x}.

Решим уравнение F(x)=f(x):

\frac{6}{x}=-\frac{6}{x^2}, x\neq 0 \\\\ 6\cdot x^2=x\cdot-6;\\\\6x^2+6x=0;\\\\6x(x+1)=0\Rightarrow x_1=0, x_2=-1.

Однако вспоминаем про ограничение для самой переменной: x\neq 0 (о чем прописано также и в условии существования первообразной). Делаем вывод: уравнение имеет единственное решение x=-1

ОТВЕТ: {-1}.

4,6(3 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ