2.(√(x-4) - a^2 + 9)(x^2 - 3x - 70) = 0 Произведение равно 0, когда любой из множителей равен 0. Начнем со второй скобки x^2 - 3x - 70 = 0 D = 9 - 4(-70) = 9 + 280 = 289 = 17^2 x1 = (3 - 17)/2 = (-14)/2 = -7; x2 = (3 + 17)/2 = 20/2 = 10 При любом а в первой скобке будет два корня во второй скобке. ответ: ни при каком а не будет 1 корня, всегда 2, 3 или 4.
3. Квадратное уравнение имеет более 2 корней, если это тождество. Это значит, что все три коэффициента: при x^2, при x и число, равны 0. { 2a^2 - 3a - 2 = 0 { a^3 - 4a = 0 { 3a^2 + a - 14 = 0 Решаем эти уравнения { (a - 2)(2a + 1) = 0 { a(a^2 - 4) = a(a - 2)(a + 2) = 0 { (a - 2)(3a + 7) = 0 При а = 2 все три коэффициента обращаются в 0. Получается 0x^2 + 0x + 0 = 0 Это тождество верно при любом х. ответ: а = 2
4. Я не понял задания. В 1 скобке что в знаменателе? y или y-1 ? Во 2 скобке что в числителе? 2y-7 или 7? И что в знаменателе? Справа тоже непонятно, что в знаменателе. Расставь скобки по-нормальному!
(x-1)(x+5)>0 Находим точки, в которых неравенство равно нулю: x-1=0 x=1 x+5=0 x=-5 Наносим на прямую (-∞;+∞) эти точки: -∞-51+∞ Получаем три диапазона: (-∞;-5) (-5;1) (1;+∞) Для того, чтобы определить знак диапазона достаточно подставить хотя бы одно число из этого диапазона: (-∞;-5) Например, подставим число -7: (-7-1)(-7+5)=-8*(-2)=16>0 ⇒ + (-5;1) Подставим число этого диапазона 0: (0-1)(0+5)=-1*5=-5<0 ⇒ - (1;+∞) Подставим 2: (2-1)(2+5)=1*7=7>0 ⇒ + -∞+-5-1++∞ ⇒ x∈(-∞;-5)U(1;+∞).
m^2-6 при m=√7-5=√2
(√2)^2 -6=2-6=-4
25-b^2 при b=1+√3
25-(1+√3)^2=25-(1+3)=25-4=21