М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
zakopirinina
zakopirinina
22.12.2021 05:23 •  Алгебра

Преобразуйте дробь: (3√3-√18)/(5-2√6)

👇
Ответ:
laura103
laura103
22.12.2021
(3√3-√18)/(5-2√6)  
(√27-√18)/(√25-√24)=(√27-√18)(√25+√24)/(25-24)=
=(3√3-3√2)(5+2√6)=15√3+6√18-15√2-6√12=
=15√3+18√2-15√2-12√3=3√3+3√2
4,4(96 оценок)
Открыть все ответы
Ответ:
myagkixmatveeva
myagkixmatveeva
22.12.2021
Для начала найдем производную функции
y'=(x^2)'*ln x+x^2*(ln x)'
y'=2x*ln x+x^2*(1/x)
y'=2x*ln x+x
Что бы найти экстремумы приравняем производную к нулю
2x*ln x+x=0
x(2*ln x+1)=0    
2*ln x+1=0    x=0 это первый корень
2*ln x=-1
ln x= -1/2
x= e^(-1/2)
x=1/√e
получаем два корня x=0 и x=1/√e
Начертим график и посчитаем интервалы монотонности
Так как у нас ln x то область определения y'  x>0 по этому за ее пределами мы знаки не считаем
Исходя из графика видно, что при x э (0;1/√e) функция убывает т.к. производная на данном интервале отрицательная, а на интервале (1/√e;+∞) функция возрастает т.к. производная на данном интервале положительная.
У нас имеется одна точка экстремума x=1/√e, и она является точкой минимума так как в ней производная меняет знак с - на +, то есть функция перестает убывать и начинает расти.

)) исследуйте на монотонность и экстремумы функцию y=x^2 ln x
4,5(36 оценок)
Ответ:
KNSVAL
KNSVAL
22.12.2021

Свойства функции y=x3y=x3

Давайте опишем свойства данной функции:

1. x – независимая переменная, y – зависимая переменная.

2. Область определения: очевидно, что для любого значения аргумента (x) можно вычислить значение функции (y). Соответственно, область определения данной функции – вся числовая прямая.

3. Область значений: y может быть любым. Соответственно, область значений – также вся числовая прямая.

4. Если x= 0, то и y= 0.

График функции y=x3y=x3

1. Составим таблицу значений:

2. Для положительных значений x график функции y=x3y=x3 очень похож на параболу, ветви которой более "прижаты" к оси OY.

3. Поскольку для отрицательных значений x функция y=x3y=x3 имеет противоположные значения, то график функции симметричен относительно начала координат.

Теперь отметим точки на координатной плоскости и построим график (см. рис. 1).

Эта кривая называется кубической параболой.

Примеры

I. На небольшом корабле полностью закончилась пресная вода. Необходимо привезти достаточное количество воды из города. Вода заказывается заранее и оплачивается за полный куб, даже если залить её чуть меньше. Сколько кубов надо заказать, что бы не переплачивать за лишний куб и полностью заполнить цистерну? Известно, что цистерна имеет одинаковые длину, ширину и высоту, которые равны 1,5 м. Решим эту задачу, не выполняя вычислений.

1. Построим график функции y=x3y=x3.

2. Найдем точку А, координата x, которой равна 1,5. Мы видим, что координата функции находится между значениями 3 и 4 (см. рис. 2). Значит надо заказать 4 куба.

II. Построить график функции y=x3+1y=x3+1.

1. Составим таблицу значений:

2. Построим точки. Мы видим, что эти точки симметричны относительно точки с координатами (0,1). В итоге получаем кубическую параболу, смещенную вверх по оси OY (см. рис. 3).

4,7(21 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ