task/29916604/29916224
1. sin2x = sin(x -π/3) ⇔sin2x + sin(π/3 -x) ⇔2sin(x/2 +π/6)*cos(3x/2 -π/6) =0⇔
[ sin(x/2 +π/6) =0 ; cos(3x/2 -π/6) =0 .⇔ [ x/2 +π/6 =πn ; 3x/2 -π/6 =π/2 + πn , n∈ ℤ .⇔
[ x= - π/3 + 2πn ; x =4π/9 + (2π/3)*n , n∈ ℤ .
2. cos(x - π/6) = cos(π/5) ⇔ cos(x - π/6) - cos(π/5) =0 ⇔
-2sin( (x-π/6-π/5)/2 )*sin( (x-π/6+ π/5)/2) =0⇔ sin( (x-11π/30) /2)*sin((x+π/30)/2)=0 ⇔
[ sin( (x-11π/30) /2) =0 ; sin((x+π/30)/2)=0.⇔[ (x-11π/30)/2 =πn ; (x+π/30)/2=πn , n∈ ℤ ⇔
[ x = 11π/30 +2πn ; x = - π/30 +2πn , n∈ ℤ .
3. cos2x = sin(π/3 +x) ⇔ cos2x = cos(π/2 -(π/3 +x) ) ⇔cos2x - cos(π/6 -x) =0 ⇔
-2sin( (3x -π/6) /2) *sin( ( x +π/6) /2) =0⇔ [sin( (3x -π/6) /2) =0 ;sin( ( x +π/6) /2)=0.⇔
[ ( 3x -π/6)/2 =πn ; (x +π/6)/2 =πn, n∈ ℤ⇔
[ x=π/18+(2π/3)*n ; x = - π/3 +2πn ,n∈ ℤ.
* P.S. sinα+sinβ=2sin((α+β)/2)*cos((α- β)/2) ;cosα-cosβ =-2sin((α -β)/2)*sin((α+β)/2) ; sinα =cos(π/2 - α) *
В решении.
Объяснение:
1) 2у/(a - b) * (a - b)/(a - b) = (2y(a - b))/(a - b)²;
Числитель и знаменатель умножить на одно и то же выражение;
3) 5a/(y - 1) * (y + 1)/(y + 1) = (5a(y + 1)/(y² - 1);
Числитель и знаменатель умножить на одно и то же выражение, в знаменателе получим разность квадратов;
5) 9y/(y - b) * (-1)/(-1) = -9y/(b - y);
При умножении на -1 знаки меняются на противоположные;
7) -4p/(p + 2) * (2 - p)/(2 - p) = (-4p(2 - p))/(4 - p²).
Числитель и знаменатель умножить на одно и то же выражение, в знаменателе получим разность квадратов.
Тогда: α = 3/4 * 180 = 45*3 = 135°
ответ: 135°