№1.
Если трехчлен (2х²- 7х+а) содержит множитель ( х - 4), значит один из корней уравнения 2х²- 7х+а= 0 равен 4, т.е. х=4
Подставим х=4 в уравнение 2х²- 7х+а=0 и найдем а.
2·4²- 7·4+а =0
а=28-32
а= - 4
№2.
4х²+ ах + 6 содержит множитель ( 2х + 1)
1)2х+1=0
х= - 0,5 - это первый корень уравнения 4х²+ах+6=0
2) Делим обе части уравнения 4х²+ах+6=0 на 4 и получим приведенное квадратное уравнение:
х²+0,25ах+1,5=0
3) По теореме Виета для приведенного квадратного уравнения найдем второй корень,
х₁ * х₂ = 1,5
х₂=1,5 : (-0,5)
х₂= - 3
4) По теореме Виета для приведенного квадратного уравнения найдем второй коэффициент, стоящий при х.
х₁+х₂= -0,25а
- 0,25а = - 0,5 + (-3)
- 0,25а = - 3,5
а = - 3,5 : (-0,25)
а = 14
кор. 4 ст (x+8) – кор. 4 (x-8) = 2
u^4=x+8 (1)
v^4=x-8 (2)
Тогда
u-v=2
C другой стороны вычтем из (1) (2), получим
u^4 –v^4 = 16
Получаем систему
u-v=2
u^4 –v^4 = 16
Из 1-го уравнения определим u
u = v+2
Подставим во второе уравнение
(v+2)^4-v^4=16
(-v^4-16) + (v^4+8v^3+24v^2+32v+16)=0
8v^3+24v^2+32v=0
v(8v^2+24v+32)=0
Имеем,
v=0
и
8v^2+24v+32=0
v^2+3v+4=0
D=3^2-4-4*1*4=-7 < 0 – нет решений
То есть имеем одно решение v=0, тогда u = v+2=2
u^4=x+8 или x+8=2^4=16, откуда x=8
область определения х (-бесконеч;+бесконеч)
область значения у [-0.5;+0.5]