М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dadshka
dadshka
09.05.2022 17:49 •  Алгебра

Решить уравнение плз |x^2+7x| =< 4x+10

👇
Ответ:
максим1716
максим1716
09.05.2022
|x^2 +7x| \leq 4x+10
1. Раскрываем модуль со знаком +.
x^2 + 7x - 4x - 10 \leq 0
x^2 + 3x - 10 \leq 0
D = 49
\sqrt{D} = 7
x_1 = \frac{-3 + 7}{2} = 2
x_2 = -5
Отсюда решение неравенства x ∈ [-5;2] или -5 ≤ x ≤ 2
2. Раскрываем модуль с минусом
-x^2 - 7x \leq 4x+10&#10;
-x^2 - 7x - 4x - 10 \leq 0
Домножим на -1 для удобства, знак неравенства изменится. 
x^2 + 11x + 10 \geq 0
x^2 + 11x + 10 =0
D = 81
\sqrt{D} = 9
x_1 = \frac{-11+ 9 }{2} = -1
x_2 = -10
Отсюда 2 решение x∈(-∞;-10]∪[-1;+∞) или х≤-10 и х≥-1
Пересекаем два наших решения:
х≤-10 и х≥-1
-5 ≤ x ≤ 2
ответ:
Отсюда общее решение x∈[-1;2] или -1≤x≤2
P.S.
Вы можете записывать как Вам удобно. И та и та форма записи верна. 
4,7(85 оценок)
Открыть все ответы
Ответ:
zroslama
zroslama
09.05.2022
1.            i’m sorry i have broken the glass 2.            i haven’t done my homework yet 3.            i’ve learnt some new english words 4.            i haven’t tidied up my room 5.            i haven’t been to berlin 6.            i’ve seen some birds in the forest 7.            i’ve been there before 8.            my classmate has won the competition 9.            i’ve been to lots of places 10.    i’ve walked my dog already
4,8(89 оценок)
Ответ:
VINERDANYA
VINERDANYA
09.05.2022

1. Разделим обе части тригонометрического неравенства на √3 и освободимся от иррациональности в знаменателе:

√3tg(3x + π/6) < 1;

tg(3x + π/6) < 1/√3;

tg(3x + π/6) < √3/3.

2. Функция тангенс имеет период π, на промежутке (-π/2, π/2) возрастает, а значение √3/3 принимает в точке π/6:

3x + π/6 ∈ (-π/2 + πk, π/6 + πk), k ∈ Z;

3x ∈ (-π/2 - π/6 + πk, π/6 - π/6 + πk), k ∈ Z;

3x ∈ (-2π/3 + πk, πk), k ∈ Z;

x ∈ (-2π/9 + πk/3, πk/3), k ∈ Z.

ответ: (-2π/9 + πk/3, πk/3), k ∈ Z.

если не правильно, напишите в коменты(

4,6(44 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ