ответ: Объяснение:
№1
1) Скорость по течению = 17+3=20км/ч
2) Скорость против течения = 17-3=14км/ч
№2
Скорость течения реки = 18-10=8км/ч
№3
1) Скорость лодки против течения = 17-6=11км/ч
2) Путь = 11*4=44 км
№4
1) скорость яхты по течению = 15+3=18км/ч
2) скорость яхты против течения = 15-3=12км/ч
3) затраченное время по течению = 36/18=2ч
4) затрач. время против теч = 36/12=3ч
5) общее затрач время на туда-обратно = 2+3=5ч
№5
1) 6 * 3 = 18 км (пройдёт плот до выхода лодки)
2) 9 + 6 = 15 км/ч (скорость лодки)
3) 15 - 6 = 9 км/ч (скорость сближения лодки и плота)
4) 18/9 = 2 часа (время через которое лодка догонит плот)
5) 15*2 = 30 км (на этом расстоянии лодка догонит плот)
Проверка: плот в это время будет от пристани на расстоянии: 6*(3+2) = 30 км
ответ: лодка догонит плот на расстоянии 10,8 километров
Объяснение:
( x + 2 ) ^ 4 - 4 * ( x + 2 ) ^ 2 - 5 = 0 ;
Пусть ( х + 2 ) ^ 2 = а, тогда:
а ^ 2 - 4 * a - 5 = 0 ;
a1 = ( 4 - √36 ) / ( 2 * 1 ) = ( 4 - 6 ) / 2 = - 2 / 2 = - 1 ;
a2 = ( 4 + √36 ) / ( 2 * 1 ) = ( 4 + 6 ) / 2 = 10 / 2 = 5 ;
Тогда:
1 ) ( x + 2 ) ^ 2 = - 1 ;
x ^ 2 + 4 * x + 4 = - 1 ;
x ^ 2 + 4 * x + 4 + 1 = 0 ;
x ^ 2 + 4 * x + 5 = 0 ;
Нет корней ;
2 ) ( x + 2 ) ^ 2 = 5 ;
x ^ 2 + 4 * x + 4 = 5 ;
x ^ 2 + 4 * x - 1 = 0 ;
x1 = ( -4 - √20 ) / ( 2·1 ) = -2 - √5 ;
x2 = ( -4 + √20 ) / ( 2·1 ) = -2 + √5 ;
ответ: х = -2 - √5 и х = -2 + √5
4sinxcosx - 3(sinx + cosx) + 2 = 0
Пусть t = sinx + cosx.
t² = sin²x + cos²x + 2sinxcosx = 1 + 2sinxcosx ⇔ 2sinxcosx = t² - 1
2t² - 2 - 3t + 2 = 0
2t² - 3t = 0
t(2t - 3) = 0
t = 0 или t = 3/2
Обратная замена:
sinx + cosx = 3/2
Разделим на √2
sinx·√2/2 + cos·√2/2 = 3/2√2
sinx·cos(π/4) + cosx·sin(π/4) = √(9/8)
sin(x + π/4) = √(9/8) - нет корней, т.к. sinA ∈ [-1; 1], а √(9/8) > 1.
sinx + cosx = 0
sinx = -cosx
tgx = -1
x = -π/4 + πn, n ∈ Z
ответ: x = -π/4 + πn, n ∈ Z.