A,b,c могут считаться базисом, если определитель из столбцов их координат не равен 0. 4 3 -1det( 5 0 4) = -3*(5*2-4*2) - 1*(4*4-(-1)*5) = -27 - не равен 0, значит вектора 2 1 2a,b,c образуют базис, что и требовалось показать.Вектор d представим в виде:d = p*a + q*b + r*cТак как координаты d заданы, получим систему уравнений для коэффициентов p,q,r:4p + 3q - r = 55p + 4r = 72p + q + 2r = 8 q = 8-2p-2r тогда получим систему 2p+7r=19 5p+4r=7Решив, получим: p = -1, r = 3 и тогда q = 4Значит разложение выглядит так:d = -a + 4b + 3c.
Пусть а и б - катеты. Тогда из условия а+б=14. По теореме Пифагора а²+б²=с², где с - гипотенуза. Тогда а²+б²=100. Из этих двух уравнений получаем систему, решая которую, находим катеты а и б:
а+б=14 и а²+б²=100; а=14-б и (14-б)²+б²=100. Далее решаем правое уравнение:
Объяснение:
Указанное выражение больше 0 при любых a.