Возрастающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется неравенство f(х1)Убывающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется неравенство f(х1)>f(х2) Если k>0, то функция убывает на промежутке (0;+Y) и на промежутке (-Y;0). Если k<0, то функция возрастает на промежутке (-Y;0) и на промежутке (0;+Y). Графиком функции является гипербола. F(x) = k/x k = 1; x1=1; x2=2 f(1)=1/1 = 1 f(2) = 1/2 = 0.5 f(1) > f(2) k = -1; x1=-1; x2=-2 f(-1)=-1/1 = -1 f(-2) = -1/2 = -0.5 f(-1)< f(-2)
Нет, не может. Почему же? Для начала озвучу правило: корень парной степени из отрицательного числа не добывается, именно поэтому вводится понятие арифметического корня. Но что такое вообще корень? Выражение: найти квадратный корень из числа а, это значит найти такое число, которое бы при умножении самого на себя давало бы а. И так для любой степени. Но почему же все-таки не добывается корень парной степени из отрицательного числа? Продемонстрируем это на простом примере: Например у нас есть уравнение: х^2=25. Решением этого уравнения будет 5 и -5, поскольку оба эти числа будут давать в квадрате 25 (5*5=25, -5*(-5)=25) А теперь решим такое уравнение: sqrt{x}=5 (sqrt - обозначение корня) решение данного уравнения будет 25, поскольку корень из 25 - 5, потому что 5 в квадрате даёт 25 (5*5=25). И решим такое уравнение: sqrt{25}=x, ответ: х=5. Но почему же не +-5? Ведь -5 в квадрате тоже даёт 25. Но нет, именно для этого вводится понятие арифметического корня. Подкоренное выражение не может быть с минусом, для парной степени. Потому что нету такого числа, что умножилось бы само на себя, и дало число с минусом. То у нас два варианта: либо число положительное либо отрицательное. И в ЛЮБОМ случае, при умножении его на себя парное количество раз, будет получатся ПОЛОЖИТЕЛЬНОЕ число: 2*2*2*2=16 (2^4) -2*(-2)*(-2)*(-2)=16=2^4. Поэтому число под корнем не может быть отрицательным, а так же подкопанное выражение не может быть отрицательным. А вот для корней с непарным показателей число может быть и отрицательным: sqrt[3]{-8}=-2 (-2*(-2)*(-2)=-8). Тут у нас может подучился отрицательное число, по сколько отрицательное число, умноженное на себя непарное количество раз, в итоге окажется отрицательным числом. И так, подитожим данным определением: Арифметический корень из неотрицательного числа а - это неотрицательное число, при возведении которого в ту степень, которую имеет корень, получился число а. Иначе говоря: Корень n-ой степени из числа а - это число, n-ая степень которого равна а. Учитывая что это неотрицательное число для корня парной степени. sqrt{-25}=... По определению, ответом должно быть такое число, квадрат которого равен числу под корнем. Но разве есть такое число, квадрат которого даёт отрицательное число? Нет. Квадрат всегда положителен, и все степени парного числа. Я это уже показал на примере. {При умножении числа а на само себя, парное количество раз, мы всегда будет получать неотрицательное число.
неравенство f(х1)Убывающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется
неравенство f(х1)>f(х2)
Если k>0, то функция убывает на промежутке (0;+Y) и на промежутке
(-Y;0). Если k<0, то функция возрастает на промежутке (-Y;0) и на
промежутке (0;+Y).
Графиком функции является гипербола.
F(x) = k/x
k = 1; x1=1; x2=2
f(1)=1/1 = 1
f(2) = 1/2 = 0.5
f(1) > f(2)
k = -1; x1=-1; x2=-2
f(-1)=-1/1 = -1
f(-2) = -1/2 = -0.5
f(-1)< f(-2)