(x-a)(x²-10x+9)=0 (x-a)(x-1)(x-9)=0 x₁=a; x₂=1; x₃=9 - корни уравнения составим из полученных корней все возможные последовательности: 1) 1, 9, а 2) 1, а, 9 3) а, 1, 9 4) а, 9, 1 5) 9, а, 1 6) 9, 1, а получено 6 последовательностей. убираем убывающие (4), (5), (6). получили три возрастающих последовательности. известно, что это арифметические прогрессии. находим значение а в каждой из них: 1) 1, 9, а d=9-1=8 => a=9+8=17 2) 1, a, 9 a=(1+9)/2=10/2=5 3) a, 1, 9 d=9-1=8 a=1-8=-7 итак, а равны 17, 5 и -7 x²-10x+9=0 корни уравнения находим по теореме виета: x₁*x₂=9 и x₁+x₂=10 => x₁=1, x₂=9 (x₁< x₂)
Пусть вклад увеличивался каждый раз в х раз у рублей первоначальная сумма ху руб сумма после первого начисления процентов тогда 1) ху -у =400 или у(х-1) =400 (ху+ 600 )р сумма второго вклада х(ху +600) р сумма после второго начисления процентов 2) х(ху +600) =5500 решим систему из двух уравнений 1) у(х-1) =400 и 2) х(ху +600) =5500 из первого уравнения у= 400/ (х-1) и подставляя во второе получим 10х² -61х +55 =0 откуда х=1,1 и х=5 (посторонний корень) вклад каждый раз увеличивался в 1,1 раза или на 10% (( 1,1 -1) *100% =10%) ответ 10%