"Меня в книгах Анатолия Алексина привлекает то, что автор этих в общем-то незатейливых произведений по-настоящему добрый человек, то, что рассказы и повести "Мой брат играет на кларнете", "А тем временем где-то", "Раздел имущества", "Безумная Евдокия", "В тылу как в тылу" и другие вовсе не утратили своего значения. И не могут утратить: они не только и не столько о времени, они о вечных проблемах взросления и становления человеческой личности, о нравственном выборе, от которого зависит, будешь ли ты сам себя уважать, не говоря уже о других.
А ещё я люблю этого автора за афористичность, за умение его в одной фразе сконцентрировать суть истины, которую порой трудно объяснить доходчиво:
Человек непонятлив, когда речь идет о том, на что ему наплевать.
Чтобы уйти от человека, надо иногда придумывать ложные причины. Потому что истинные бывают слишком жестоки. Но чтобы ПРИЙТИ, ничего не нужно придумывать. Надо просто прийти, и все.
Беспечное счастье выглядит жестоким и наглым, потому что еще далеко не все люди на свете счастливы.
И что бы там ни говорили, если я плачу над повестью "В тылу как в тылу" , долго размышляю о "Позднем ребёнке", перечитываю "Безумную Евдокию"... значит для меня это хорошие книги и хороший писатель".
См. рисунок в приложении. Строим границы указанных областей. у=2х²+4х-1 - парабола, ветви вверх, вершина в точке (-1;-3) Парабола разбивает плоскость хОу на две части внутреннюю и внешнюю. Чтобы узнать какая из этих областей удовлетворяет неравенству, выбираем произвольную точку, например (0;0) и подставляем её координаты в неравенство 0≥-1 - верно. Значит область, определяемая неравенством у≥ 2х²+4х-1, содержит точку (0;0). Это внутренняя часть параболы.
Строим прямую х+у=2. Она также разбивает плоскость хОу на две полуплоскости. Область определяемая неравенством х+у≥2 расположена ниже прямой. Координаты точки (0;0) удовлетворяют неравенству х+у≤2: 0+0≤2 - верно.
Наибольшую длину имеет отрезок АВ, лежащий на прямой х=-1 О т в е т. р=-1