Объяснение:
Проверим случай p=5, уйдет квадратичная часть, но линейная останется, значит неравенство не будет выполняться для всех x.
При p не равном 5 график левой части неравенства представляет собой параболу, для того, чтобы неравенство было верно для любого x вся парабола должна лежать ниже оси абсцисс, т. е. ветви вниз(p-5<0) и D(дискриминант)<0.
D1=(2p-4)^2-4(p-5)(-p-3)=8p^2-24p-44<0
2p^2-6p-11<0
D2=36+88=124
p1=(3-sqrt(31))/2
p2=(3+sqrt(31))/2
D1<0 при
Эти значения p меньше пяти(т.е. ветви направлены вниз). Заносим их в ответ.
D=1+8=9=3²
х1=(-1+3):2=1
х2=(-1-3):2=-2
р²+р-2=(р-1)(р+2)
(р²+р-2)/(4-9р²)=[(р-1)(р+2)]/[(2-р)(2+р)]=(р-1)/(2-р)