Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса: Не имеют корней; Имеют ровно один корень; Имеют два различных корня. В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.ДискриминантПусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно: Если D < 0, корней нет; Если D = 0, есть ровно один корень; Если D > 0, корней будет два.
Пусть зарплата мамы составляет х рублей, зарплата папы - у рублей, а бабушки – z рублей. Если маме увеличат зарплату на 20% (20/100x=0,2х), доход семьи возрастет на 6 % (6/100=0,06), Если папе увеличат зарплату на 20% (20/100x=0,2y), доход семьи возрастет на 10 % (10/100=0,1), Если бабушке увеличат зарплату на 20% (20/100x=0,2z), доход семьи возрастет на 3200 рублей.
Составим систему уравнений (не забудьте обозначить ее скобкой): 0,2х=0,06 (x+y+z) 0,2у=0,1 (x+y+z) 0,2z=3200
Решим последнее уравнение: 0,2z=3200 z=3200:0,2=16000 (рублей) – зарплата бабушки.
Подставим это значения в первые два уравнения: 0,2х=0,06 (x+y+16000) 0,2у=0,1 (x+y+16000)