М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anyaopalsuk
anyaopalsuk
22.08.2020 07:21 •  Алгебра

Докажите ,что если натуральное число a делится на 3,то число 7а делится на 3

👇
Ответ:
bazakechova566
bazakechova566
22.08.2020
Доказательство.
Выразим данное число А как:
А1 = 3а + 1; А2 = 3а + 2.
Тогда A^2:
(A1)^2 = (3a + 1)^2 = 9a^2 + 6a + 1 = 3(3a^2 + 2a) + 1;
(A2)^2 = (3a + 2)^2 = 9a^2 + 12a + 4 = 3(3a^2 + 4a + 1) + 1.
Квадрат данного числа, уменьшенный на 1:
(А1)^2 - 1 = 3(3a^2 + 2a); (A2)^2 - 1 = 3(3a^2 + 4a + 1).
Утверждение доказано.
4,4(58 оценок)
Открыть все ответы
Ответ:
1Философ11
1Философ11
22.08.2020

Найдем сначала уравнение секущей:

Она проходит через две точки:х1=-1, у1 = 2*(-1)^2 = 2

  и х2 = 2, у2 = 2*2^2 = 8

Ищем уравнение секущей в виде: y=kx+b

Подставим сюда две наши точки и решим систему, найдем k:

-k+b=2

2k+b=8   Вычтем из второго первое: 3k = 6,   k= 2.

Наша искомая касательная должна быть параллельна секущей, значит имее такой же угловой коэффициент. k=2

Найдем точку касания, приравняв производную нашей ф-ии двум:

Y' = 4x = 2

x = 1/2

Уравнение касательной к ф-ии в т.х0:

у = у(х0) + y'(x0)(x-x0)

Унас х0 = 1/2, у(1/2) = 2*(1/4) = 1/2, y'(1/2)= 2.

Тогда получим:

у = 1/2  +  2(х - 1/2)

у = 2х -0,5   - искомое уравнение касательной.

4,4(26 оценок)
Ответ:
alixegp073ii
alixegp073ii
22.08.2020

Допустим, что \cos x = 0. Тогда имеем уравнение -2\sin^2x=2, не имеющее решений, поскольку в левой части число неположительное, а в правой - положительное, т.е. левая часть никак не может быть равна правой. Т.е. \cos x\neq 0

Преобразуем правую часть:

2 = 2\cdot 1=2(\sin^2x+\cos^2x)=2\sin^2x+2\cos^2x.

Перенесем все влево с противоположным знаком:

3\cos^2x+3\sin x\cos x-2\sin^2x-2\sin^2x-2\cos^2x=0;\\\\\cos^2x+3\sin x\cos x-4\sin^2x=0.

Поскольку \cos x\neq 0, можем разделить обе части уравнения на \cos^2 x. В итоге имеет равносильное исходному уравнение

1+3tg x - 4tg^2x=0|\cdot (-1)

4tg^2x - 3tg x - 1 = 0.

Заметим, что tg x = 1  является корнем уравнения относительно тангенса. Тогда по теореме Виета второй корень равен -\frac{1}{4}.

Соответственно, имеем два случая: или tg x =1, или tg x = -\frac{1}{4}.

1 случай.

 tg x =1;\\\\x=arctg(1) +\pi k, k\in{Z};\\\\x=\frac{\pi}{4} +\pi k, k\in{Z}.

2 случай.

tg x =-\frac{1}{4};\\\\x=arctg(-\frac{1}{4}) +\pi n, n\in{Z};\\\\x=-arctg\frac{1}{4} +\pi n, n\in{Z}.

Имеем две серии корней.

ОТВЕТ:  π/4 + πk, k ∈ Z;   -arctg(1/4) + πn, n ∈ Z.

4,5(17 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ