3+30x-35>12x-5; 30x-12x> -5-3+35; 18x>27; x>27/18, x>1,5. ответ: (1,5: +бесконечность). 1,5 не входит в область допустимых значений(строгое неравенство).
Y=x^2*(3-x) то есть корни х=0 и х=3 возьмем производную она равна 6х-3x^2=3x(2-x) точки экстремума х=0 и х=2 методом интервалов находим участки, где производная больше 0 (ф-я возрастает) и меньше 0 (ф-я убывает). Производная больше 0 при х∈(0;2) и отрицательна при х∈(-∞, 0)∨(2,∞). в точке х=2 максимум - производная меняет знак с + на -, а точка х=0 локальный минимум,точка перегиба, так как вторая производная равна 6-6х, есть 6-6х=0 или х=1. итак линия графика такая - она идет сверху вправо вниз до точки х=0, выпуклостью вниз, касается оси Х в точке х=0 и далее в точке х=1 выпуклостью вверх возрастает до точки х=2 и, затем, идет вниз, пересекая ось в точке х=3
График расположен выше оси ОХ. Точки пересечения с осью ОХ: . Графики функций - это параболы , ветви которых направлены вниз, а вершины в точках (0, а). При х=0 sin0=0 и точка (0,0) является точкой пересечения графика у=|sinx| и оси ОУ, на которой находятся вершины парабол. При а=0 графики y=|sinx| и y=x² имеют одну точку пересе- чения - (0,0), при а<0 точек пересе- чения вообще нет. А при а>0 будет всегда 2 точки пересе- чения этих графиков и соответственно, будет выполняться заданное неравенство. То есть одна точка пересечения при а=0. ответ: а=0.