10,4 или 13 га в день
Объяснение:
Пусть x - Обрабатываемая площадь посевов в день (ед. измерения - га/день), тогда по норме он должен выполнить заказ ровно за 52/x дней, но известно, что на предыдущий день (т.е на ), он обработал от 48 до 54,6 га, со скоростью, превышающей норму на 3 (т.е скорость равна x+3) итого получаем
поработаем сначала с выражением слева:
52/x - 1 = (52-x)/x, т.е. в Левых частях получается выражение (52-x)(x+3)/x
Раскроем скобки: (-x^2 + 49x + 156)/x
так как x > 0 (Действительно, механизатор не может обрабатывать в отрицательную площадь земли), то можем домножить на x (Обращу внимание, что домножать на x можно ТОЛЬКО если известно, что он только одного знака (в силу одз или условий задачи), причем если x всегда < 0, то нужно еще и поменять знак неравенства):
Решим неравенства по отдельности:
1) -x^2 + x + 156 >= 0 2) -x^2-5,6 + 156 <= 0 |*5
D = 1 + 624 = 625 (25*25) -5x^2-28x+780 <= 0
x1 = (-1 - 25)/-2 = 13 D =784 + 15600=16384 (128*128)
x2 = (-1+25)/-2 = -12 x1 = (28-128)/-10 = 10
Далее используя метод x2 = (28+128)/-10 = -15,6
интервалов или свойства Далее используя метод
параболы получаем: интервалов или св-ва параболы:
-12 <= x <= 13 x <= -15,6 или x >= 10
x > 0, следовательно x > 0 следовательно
x <= 13 x >= 10
Нужно было сделать заказ за целое число дней, это означает что 52/x - целое число. Максимально возможное значение 52/x при x=10 52/10=5,2, Минимальное при x=13, 52/13 = 4 т.е. заказ выполнен при норме за 4 или 5 дней, если за 4, то скорость при норме 52/4 = 13 га в день, если за 5 дней, то 52/5 = 10,4 га в день
Для других точек хотя бы одно неравенство будет неверным.
Например,
неверно 2 неравенство
7) Из города А в город В ведут 8 дорог. Обозначим их: 1,2,3,4,5,6,7,8 .
Из города В в город С ведут 9 дорог. Обозначим их: a,b,c,d,e,f,g,i,k .
Тогда можно написать, какие маршруты могут быть.
(1,a) (1,b) (1,c) (1,d) (1,e) (1,f) (1,g) (1,i) (1,k)
(2,a) (2,b) .......................................................... (2,k)
(3,a) (3,b)............................................................. (3,k)
........................................................................................
(8,a) (8,b).............................................................. (8,k)
Образовалась таблица из 8 строчек и 9 столбцов. Количество элементов в этой таблице равно 8*9=72 . Поэтому и маршрутов может быть 72 .
2lg³x =8lgx
lg³x - 4lgx = 0
lgx · (lg²x - 4) = 0
lgx · (lgx - 2) (lgx + 2) = 0
1) lgx = 0 → x = 1
2) lgx - 2 = 0 → lgx = 2 → x = 100
3) lgx + 2 = 0 → lgx = -2 → x = 0.01
ответ: 0,01; 1; 100