Чертим отрезок равный длине одной из сторон. в начало или конец отрезка устанавливаем циркуль и чертим окружность радиусом равным второй стороне. берём транспортир и устанавливаем его в центр окружности и отмеряем угол между исходным отрезком и второй стороной, ставим точку на окружности. соединяем отрезком центр окружности и точку на окружности. далее соединяем второй конец отрезка и точку на окружности. чертим отрезок равный одной из сторон, лучше выбрать большую сторону. в начало отрезка устанавливаем циркуль и радиусом, равным длине второй стороны, чертим окружность. на другом конце отрезка также устанавливаем циркуль и чертим окружность, но радиусом равным длине третьей стороны. получим точку пересечения окружностей. соединяем её с вершинами исходного отрезка и получаем заданный треугольник.
Пусть его скорость была -хкм/ч. первый за 2 часа проехал 16*2=32 км, что бы его догнать нужно 32/(х-16) часов. второй за 1 час проехал 10 км, что бы догнать второго нужно 10/(х-10) часов. разница в гонке между ними известно по условию. состовляем уравнение 32/(х-16)-10/(х-10)=4,5 32х-320-10х+160=4,5(х-10)(х-16) при х≠10 и х≠16 22х-160=4,5(х²-26х+160) 4,5х²-139х+880=0 д=59² х1=(139+59)/9=22 х2=(139-59)/9=8.(8) так как х2< 10 то это не может быть решением, так как он никогда не догнал бы даже второго велосипедиста. получаем ответ при х=22км/ч ответ: 22 км/ч
a² - 5a + 4 = 0
a² - 4a - a + 4 = 0
a(a - 4) - (a - 4) = 0
(a - 1)(a - 4) = 0
a = 1; a = 4
x + y = 1; x + y = 4
b² - b - 2 = 0
b² + b - 2b - 2 = 0
b(b + 1) - 2(b + 1) = 0
(b - 2)(b + 1) = 0
b = -1; b = 2.
x - y = -1; x - y = 2
Получаем систему четырёх совокупностей:
1)
x + y = 1
x - y = -1
2x = 0
x + y = 1
x = 0
y = 1
2)
x + y = 1
x - y = 2
2x = 3
x + y = 1
x = 1,5
y = -0,5
3)
x + y = 4
x - y = -1
2x = 3
x + y = 4
x = 1,5
y = 2,5
4)
x + y = 4
x - y = 2
2x = 6
x + y = 4
x = 3
y = 1
Все системы решены алгебраическим сложением
ответ: (0; 1), (1,5; -0,5), (1,5; 2,5), (3; 1).