Ася решила заполнить таблицу 7×8 натуральными числами от 1 до 56 так, чтобы суммы чисел во всех столбцах были равны. в каждой клетке таблицы должно стоять ровно одно число. сможет ли она осуществить задуманное?
График заданной функции с модулем имеет вид параболы, у которой часть графика ниже оси х зеркально перенесена в положительные значения. Граничные точки находим из уравнения x²−6x+8 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-6)^2-4*1*8=36-4*8=36-32=4; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√4-(-6))/(2*1)=(2-(-6))/2=(2+6)/2=8/2=4; x_2=(-√4-(-6))/(2*1)=(-2-(-6))/2=(-2+6)/2=4/2=2. То есть в точках х =2 и х =4 происходит перелом параболы. График и таблица координат точек для построения графика приведены в приложении.
1. f(x)=ln(5x+4), в точке x0=2 f'(x)=1/(5x+4) * (5x+4)'= 1/(5x+4) *5= 5/(5x+4). f'(2)=5/(5*2+4)=5/14.
2.lg(3x+4)=2lg x lg(3x+4)=lgx² (двойка идет в степень) Так как логарифмы с одинаковым оснаванием и они равны, то можно прировнять подлогарифмические выражегия 3х+4=х² х²-3х-4=0 По ьеореме Виета х1х2=-4 х1+х2=3 х1=-1 х2=4 ОДЗ х>0 и 3х+4>0, т.е х>0 и х>-4/3, т.е просто х>0. Тогда х1 нас не удовлетворяет. ответ: 4
3. lg^(2) x-3lg x = -2 Вводим замену lgx= t t²-3t+2=0 По т. Виета t1•t2=2 t1+r2=3 t1=1 t2=2, возвращаемся к замене 1. lgx=1 (lg это десятичный логарифм, т.е. основание у него 10, еще мы знаем что логарифм у которого основание равно подлогарифмическому выражению равен 1) lgx=lg10 (мы 1 меняем на lg10) x=10 2. lgx=2 lgx=2lg10 lgx=lg10² x=10² x=100. ответ: 10; 100.
По типу:
1 2 3 4
8 7 6 5
9 10 11 12
16 15 14 13