М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nastlerfight
Nastlerfight
04.07.2021 06:55 •  Алгебра

3b^-b^2 сколько (три бэ в квадрате минус бэ в квадрате)

👇
Ответ:
Lololoshka98
Lololoshka98
04.07.2021
2b^2
4,4(53 оценок)
Ответ:
plimita134
plimita134
04.07.2021
Будет 2b^2(2бэ в квадрате),
потому что когда вычитаешь, например, из 4mn mn, ты как бы вычитаешь единицу (4-1=3), mn никуда не теряется. Тоже самое из b^2, 
ты как бы вычел из тройки единицу, дружбан по имени b^2 остался.
4,5(12 оценок)
Открыть все ответы
Ответ:
austimenko291
austimenko291
04.07.2021
Пусть x (кг) - масса первого сплава, y (кг) - масса второго сплава. Тогда масса третьего сплава равна

x+y = 200. (уравнение 1)

В первом сплаве содержится 10 % никеля, т.е. 0,1x (кг) никеля, а во втором сплаве - 30% никеля, т.е. 0,3y (кг) никеля. Третий сплав содержит 25% никеля, т.е. 0,25*200 = 50 (кг) никеля. Получаем уравнение:

0,1x+0,3y = 50.

Умножим последнее уравнение на 10, получим:

x+3y = 500. (уравнение 2)

Вычтем из уравнения 2 уравнение 1:

x+3y - (x+y) = 500 - 200,

2y = 300,

y = 150,

x = 200 - 150 = 50.

Тогда y-x = 150 - 50 = 100 (кг), т.е. масса первого сплава меньше массы второго сплава на 100 кг.
4,7(59 оценок)
Ответ:
Пакмен007
Пакмен007
04.07.2021

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ