Число при делении на 5 дает в остатке 3 только если оно заканчивается на 3 или на 8. Докажем что ни одно целое число в квадрате не заканчивается ни на 3, ни на 8.
если число закачивается на 0, то в квадрате оно заканчивается на 0 если число закачивается на 1, то в квадрате оно заканчивается на 1 если число закачивается на 2, то в квадрате оно заканчивается на 4 если число закачивается на 3, то в квадрате оно заканчивается на 9 если число закачивается на 4, то в квадрате оно заканчивается на 6 если число закачивается на 5, то в квадрате оно заканчивается на 5 если число закачивается на 6, то в квадрате оно заканчивается на 6 если число закачивается на 7, то в квадрате оно заканчивается на 9 если число закачивается на 8, то в квадрате оно заканчивается на 4 если число закачивается на 9, то в квадрате оно заканчивается на 1
1) Число делителей числа вида 2a, где a нечетное, четно, поскольку оно не является полным квадратом. Полным квадратом не является из-за того, что в разложении на простые множители у числа 2a всего одна 2, которая не может быть представлена как квадрат натурального числа. 2) Раз доказали, что число делителей четно, то разобьем все делители на две группы - в которых числа четные и в которых числа нечетные. Каждому четному числу из первой группы соответствует ровно одно нечетное число из второй группы такое, что их произведение дает число 2aТаких групп n/2, где n-число делителей числа 2a. Поэтому количество четных делителей равно количеству нечетных делителей.
Можно доказать по-другому. Есть у нас число 2a. Выпишем все множители числа a. Множество множителей числа 2a содержит множество множителей числа a. Оставшиеся множители числа 2a - это произведение каждого из множителей числа a на число 2, поскольку каждый из множителей числа a взаимно простой с 2. Множители, в состав которых не входит 2 - нечетные, а в состав которых входит 2 - четные. Раз из одного множества с нечетными элементами можно получить второе множество с четными элементами, причем их количество совпадает, то у числа 2a количество четных делителей равно количеству нечетных делителейВ конце концов, это очевидно
угол 2 = 70 градусов
угол БОС - прямой - равен 90 градусов.
Значит угол 1 равен 180-(70+90) = 20 градусов.