Найдем значения Х, которые обнуляют подмодульные выражения: 4x-10=0; x=2,5 2x-14=0; x=7 Нанесем эти точки на числовую ось:
2,57
Эти точки разбивают числовую прямую на три промежутка.Рассмотрим все три случая: 1)x<2,5 На этом промежутке оба подмодульных выражения отрицательны, поэтому модули раскроем со сменой знака: [-4x+10+2x-14]/ (x+3)(x-6) <=0 (-2x-4)/(x+3)(x-6) <=0 -2(x+2) / (x+3)(x-6) <=0 (x+2)/(x+3)(x-6) >=0
-__(-3)__+[-2]___-(6)+
С учетом промежутка получаем: x e (-3; 2]
2)2,5<=x<7 Первый модуль раскроем без смены знака, а второй - со сменой знака: [4x-10+2x-14]/(x+3)(x-6) <=0 (6x-24)/(x+3)(x-6)<=0 6(x-4)/(x+3)(x-6)<=0 (x-4)/(x+3)(x-6)<=0
5a³b - 3ab² + 4ab² - 7a³b = -2a³b + ab²;
2xy²x³ - 3xyxy + 8x²y²x² - 14 = 2x⁴y² - 3x²y² + 8x⁴y² - 14 =
= 10x⁴y² - 3x²y² - 14;