Объяснение:
в) (x + 3)/*((2x - 3)(2x + 3)) - (3 - x)/((2x + 3)^2) - 2/(2x - 3) = 0
(2x ^2 + 3x + 6x + 9 - 6x + 2x^2 + 9 - 3x - 8x^2 - 24x - 18)/((2x - 3)(2x + 3)^2) =
= (- 4x^2 - 24x)/((2x - 3)(2x + 3)^2)
Уравнение равно нулю, если числитель равен нулю
- 4x^2 - 24x = 0 |: (-4)
x^2 + 6x = 0
x(x + 6) = 0
x = 0
x = - 6
г) ОДЗ 2x ± 1 ≠ 0
x ≠ ± 0,5
x ≠ 0
(1 - 2x)/(3x(2x + 1)) + (2x + 1)/(7x(2x - 1)) - 8/(3(2x - 1)(2x + 1)) = 0
(14x - 28x^2 - 7 + 14x + 12x^2 + 6x +6x + 3 - 56x)/(21x(2x - 1)(2x + 1)) =
= (-16x^2 - 16x - 4)/(21x(2x - 1)(2x + 1))
Уравнение равно нулю, если числитель равен нулю
-16x^2 - 16x - 4 = 0 | : (-4)
4x^2 + 4x + 1 = 0
(2x + 1)^2 = 0
x = -0,5 - ∅ (ОДЗ)
ответ - решения нет
Пирамида SABCD, ABCD - квадрат в основании, SH - высота, H - точка пересечения диагоналей квадрата. SH1 - высота треугольника SDC. H1 соединим s H. SH1 перпендикулярен DC, HH1 так же перпендикулярен DC, значит <SH1H - линейный угол двугранного угла SDCH, следовательно <SH1H = 60°.
SH перпендикулярен HH1, так как перпендикулярен плоскости основания, следовательно и любой линии, лежащей в этой плоскости. Из прямоугольного треугольника SHH1:
sin<HH1S = SH/SH1
SH1*sin60° = 4√3
SH1*√3/2 = 4√3
SH1 = 8
По теореме пифагора: HH1² = SH1² - SH²
HH1² = 64 - 48 = 16
HH1 = 4
Рассмотрим треугольники CHH1 и CAD. Они подобны (один угол общих, два остальных - соответственные углы при пересечении двух параллельных прямых третьей).
2HC = AC (диагонали квадрата точкой пересечения делятся на две равные части)
Значит: AC/HC = AD/HH1
2HC/HC = AD/HH1
AD = 2HH1
AD = 2*4 = 8
Sбок = Pосн*h, где h - апофема
Sбок = Pосн*SH1 = (4*8)*8 = 256
Sосн = AD² = 8² = 64
Sполн = Sбок + Sосн = 256 + 64 = 320
ответ: 320
ответ: