Начать следует с раскрытия скобок. Скобки (6x+7)(6x-7) можно раскрыть, используя формулу сокращённого умножения (a-b)(a+b)=a^2-b^2. Используем её в уравнении:
(6х+7)(6х-7)+12х=36х^2+12х-49
36x^2-49+12x=36x^2+12x-49
Теперь перенесём все переменные x в левую часть уравнения, а все числа - в правую. Получим:
36x^2+12x-36x^2-12x=-49+49
Приведём подобные слагаемые в обеих частях уравнения, попутно взаимоуничтожив все противоположные слагаемые:
36x^2 и -36x^2 взаимоуничтожились
12x и -12 x тоже взаимоуничтожились
-49 и 49 тоже взаимоуничтожились
Что же мы получаем? В обеих частях уравнения все слагаемые уничтожены, мы получили это:
0=0
Полученное нами равенство оказалось верным.
Это значит, что какое бы мы x ни выбрали, эта переменная всегда будет пропадать и равенство будет верным. Из этого следует, что у данного уравнения бесконечное количество решений.
ответ: x - любое число
1. Натуральные 100; 21; 10 (натуральные - это числа, которые возникают при счете предметов.)
Целые 100; 21; 0 ; 10; - 15; -24; (целые - это натуральные, им противоположные и нуль.)
Рациональные -3,2 ; 100; - 14,5; 21; 0; 10; - 15; 1,2333 ...=1.2(3) ; -2,121121112 т.к. можем представить в виде р/q, где р- целое, q- натуральное.
Иррациональные 5, 1313111...; 0,1010010001...; (т.к. иррациональные числа - это числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби).
2.а) каждое натуральное число является целым - да.
б) каждое число является натуральным. - нет.
в) каждое число является рациональным - нет.
г) каждое рациональное число является действительным - да.
д) каждое действительное число является рациональным - нет.
е) каждое иррациональное число является действительным - да.
ж) каждое действительное число является иррациональным - нет.
Задание 3.
Сравните числа. а) 7,653>7,563
б) 1,(56) > 1,56
в) - 4,(45) < -4,45
г) 1,(34) <1,345
Задание 4:
Число 7,15 г) рациональное, т.к. 7,15=715/100
Число - 35. б) целое