1. освободитесь от иррациональности в знаменателе: a/корень из трех; 3/корень из 31 - корень из 2. 2. сократите дроби: 6 + корень из 6/корень из 30 + корень из 5; 9 - а/3 + корень из а. надо! заранее .
У = х³ - 3х + 1 производная y' = 3х² - 3 приравниваем y' = 0 и на ходим точки экстремумов 3(х² - 1) = 0 3(х + 1)(х - 1) = 0 Точки экстремумов х1 = -1; х2 = 1; График функции y' = 3х² - 3 - парабола веточками вверх пересекает ось х в точке х = -1, меняя знак с + на -. То есть в этой точке максимум. В точке х = 1, наоборот, знак производной меняется с - на +, поэтому это точка минимума. Найдём минимальное и максимальное значение функции 1) точка максимума при х = -1 у max = -1 + 3 + 1 = 3 2) точка минимума при х = 1 у min = 1 - 3 + 1 = -1
Для начала найдем производную этой функции и приравняем её к нулю: -3 х^2+2х+8=0 Д=100 х1=-4/3 х2=2 так мы нашли критические точки. отметим их на числовом луче: - + - ___-4/3___2
-4/3 точка минимума значит, наименьшее значение функции будет равно =64/27+16/9-32/3=-176/27 2 точка максимума значит, наибольшее значение функции равно: =-8+4+16=12
ответ: функция убывает на промежутке (-бесконечность;-4/3) в объединении с (2;+бесконечность) функция возрастает на промежутке (-4/3;2) наибольшее значение функции = 12 наименьшее значение функции = -176/27
3/(√31-√2)=3*(√31+√2) / (√31²-√2²) = 3(√31+√2) / 29
6+√6 √6(√6+1)
= =√6/5
√30+√5 √5(√6+1)
9-a (3-√a)(3+√a)
= = 3-√a
3+√a 3+√a