Объяснение:
Для выполнения задания, а именно, разложения на множители выражения 5a2 - 5ax - 7a + 7x мы применим ряд преобразований.
И первым действием мы выполним группировку первых двух и последних двух слагаемых.
Итак, группируем и получаем выражение:
5a2 - 5ax - 7a + 7x = (5a2 - 5ax) - (7a - 7x).
Из каждой из полученных скобок мы можем вынести общий множитель 5a и 7. Итак, выносим и получаем:
(5a2 - 5ax) - (7a - 7x) = 5a(a - x) - 7(a - x).
Теперь мы можем вынести (x + y) как общий множитель:
5a(a - x) - 7(a - x) = (a - x)(5a - 7).
В решении.
Объяснение:
с -3 -2 -1
2с +3 2*(-3)+3= -3 2*(-2)+3= -1 2*(-1)+3 = 1
2(с+3) 2*(-3+3)=0 2*(-2+3)=2 2*(-1+3)=4
(2с)²-3 (2*-3)²-3=33 (2*-2)²-3=13 (2*-1)²-3=1
2(с²-3) 2*((-3)²-3)=12 2*((-2)²-3)=2 2*((-1)²-3)= -4
с 0 1 2 3
2с+3 0+3=3 2*1+3=5 2*2+3=7 2*3+3=9
2(с+3) 2*(0+3)=6 2*(1+3)=8 2*(2+3)=10 2*(3+3)=12
(2с)²-3 (2*0)²-3= -3 (2*1)²-3=1 (2*2)²-3=13 (2*3)²-3=33
2(с²-3) 2*(0²-3)= -6 2*(1²-3)= -4 2*(2²-3)=2 2*(3²-3)=12