ОДЗ: x ≠ -5 когда x > -3 дробь положительная ⇒ больше нуля когда -5 < x < -3 дробь отрицательная ⇒ меньше нуля когда x < -5 дробь положительная ⇒ больше нуля ответ: x ∈ (-5; -3)
Анализируем отмеченные числа. Числа а и b отрицательные, т.е. a<0 и b<0. Причём a<b. Число с положительное, т.е. с>0.
1) a+b>0 - неверно Т.к. числа a и b отрицательные, то их сумма число тоже отрицательное.
2) 1/a>1/b - верно Если для модулей чисел справедливо неравенство |a| > |b|, то у их обратных чисел всё наоборот: 1/|a| < 1/|b|. Но т.к. числа отрицательные, то 1/a > 1/b
3) ac>0 - неверно Перемножаются числа с разными знаками, следовательно, результат отрицательный.
4) 1/b>1/c - неверно Слева число отрицательно, а справа - положительно.
Анализируем отмеченные числа. Числа а и b отрицательные, т.е. a<0 и b<0. Причём a<b. Число с положительное, т.е. с>0.
1) a+b>0 - неверно Т.к. числа a и b отрицательные, то их сумма число тоже отрицательное.
2) 1/a>1/b - верно Если для модулей чисел справедливо неравенство |a| > |b|, то у их обратных чисел всё наоборот: 1/|a| < 1/|b|. Но т.к. числа отрицательные, то 1/a > 1/b
3) ac>0 - неверно Перемножаются числа с разными знаками, следовательно, результат отрицательный.
4) 1/b>1/c - неверно Слева число отрицательно, а справа - положительно.
ОДЗ: x ≠ -5
когда x > -3 дробь положительная ⇒ больше нуля
когда -5 < x < -3 дробь отрицательная ⇒ меньше нуля
когда x < -5 дробь положительная ⇒ больше нуля
ответ: x ∈ (-5; -3)