1) В точках пересечения координаты функцмй одинаковы надо приравнять их:
x^2 -1 =-x+1 x^2 + x -2 = 0 x = -1/2 =-V(1/4+2) = -1/2+-V(1/4 + 8/4) =-1/2 +-3/2
x1 =1 x2 = -2 Подставив эти значения, получим у1 = 0 у2 = 3.
2) координаты точек пересечения графика функции y=x^2-3x с осью x имеют значения у = 0.
x^2-3x = 0 х*(х -3) = 0 х1 = 0 х2 = 3.
3) координаты точек пересечения графика функции y=3x^2+5x-2 с осями координат: х =0
у = 0
При х = 0 у = -2
у = 0 3x^2+5x-2 = 0 x = -5 +-V(5^2 +4*3*2) / 2*3 = -5 +-V(25 + 24) / 6
x1 = 2/6 = 1/3 x2 =-2.
I. Надеюсь, что под корнем всё выражение)
• Перепишем исходную функцию:
y = 4√(x² - 8x + 15)
D (y) - ?
• Выражение под корнем должно быть неотрицательным, т.е. получаем следующее неравенство:
x² - 8x + 15 ≥ 0
• Вводим функцию:
ƒ (x) = x² - 8x + 15 , D (ƒ) = ℝ
• График парабола, ветви вверх
• Ищем нули функции:
x² - 8x + 15 = 0
По теореме, обратной теореме Виета:
x(1) = 5 и x(2) = 3
• Строим числовую ось, отмечаем точки и учитывая направление ветвей параболы ищем промежутки знакопостоянства
• Получается, что ƒ (x) ≥ 0 на: ( - ♾ ; 3] ⋃ [5 ; + ♾ )
⇒ D (y) : ( - ♾ ; 3] ⋃ [5 ; + ♾ )
ответ: ( - ♾ ; 3] ⋃ [5 ; + ♾ )
II. Но если под корнем только был x, то гораздо проще:
y = 4√x² - 8x + 15
D (y) - ?
x² ≥ 0
А квадрат любого действительного числа всегда будет неотрицательным, ⇒ D (y) = ℝ
ответ : ℝ