Сначала берём определённый интеграл: Значит, sina > 0. Это возможно, если a в первой и второй четвертях, т.е. 0 < a < π А с учётом периода 2π, то 2πn < a < π + 2π, где n ∈ Z
Это задача на наибольшее(наименьшее) значение функции. План наших действий: 1) ищем производную 2) приравниваем её к нулю, решаем получившееся уравнение 3) смотрим: какие корни попали в указанный промежуток 4) вычисляем значения данной функции в этих корнях и на концах промежутка. 5) пишем ответ начали? 1) y' = 2Сosx + 24/π 2) 2Сosx + 24/π = 0 2Сosx -= - 24/π Сosx = - 12/π нет решений 3) решений нет, значит, в функцию подставим концы промежутка и найдём из ответов наибольшее значение. 4) а) х = -5π/6 у = 2Sin(-5π/6) +24*(-5π/6)/π + 6 = -2*1/2 - 20 +6 = -1 -20 +6 = -13 б) х = 0 у = 0+0 +6 = 6 ответ: max y = 0
Считаем по умолчанию что кости шестигранные и одинаковые. Количество возможных исходов - 6*6*6=216 Для того, чтобы произошло событие А, должны осуществиться три события «выпадает грань х»: 1/6*1/6*1/6= 1/216 Появление не более двух единиц, подходящие исходы: 111, 101, 110, 011 1 - выпала единица, 0 - выпала не единица Вычисляем вероятность для каждого случая. Сумма полученных вероятностей будет ответом. 1/6*1/6*1/6+1/6*5/6*1/6+1/6*1/6*5/6+5/6*1/6*1/6=1/216+5/216+5/216+5/216=16/216=2/27
Значит, sina > 0. Это возможно, если a в первой и второй четвертях, т.е.
0 < a < π
А с учётом периода 2π, то
2πn < a < π + 2π, где n ∈ Z