Строишь параллелограмм ABCD, где угол A был бы слева снизу. Далее проводишь биссектрису этого угла и соединяешь ее со стороной BC. Док-во:
1. угол BAF = углу FAD(св-ва биссектрис), угол FAD = углу AFB(по свойству накрестлежащих углов при параллельных прямых). 2. Т.к. угол BAF = углу AFB, значит треугольник BAF - равнобедренный(по признаку равнобедренных треугольников). 3. Поскольку треугольник BAF - равнобедренный, значит сторона BF = AB(по свойству равнобедренного треугольника). 4. BF = BA, значит BA имеет такое же отношение, как и BF, с CF, как 2:3, а это значит, что BA:BC, как 2:5( пять поскольку мы складываем части BF(2) + CF(3) и получаем 5). 5. Условно мы можем принять эти мин. части этих сторон за X, тогда мы получаем, что AB = 2X, CD = 2X, BC = 5X, AD = 5X. 6. Из формулы периметра получаем, что AB + CD + BC + AD = P; 2X + 2X+ 5X+ 5X = 56; 14X = 56; X = 4. 7. Далее, зная X, мы находим стороны, путем умножения X на количество этих X в стороне и получаем, что AB = 2X; X = 4, значит AB = 8 = CD ( по свойству параллелограмма), CB = 5X; X = 4, значит CD = 20 = AD(по свойству параллелограмма). ответ: AB = 8, CD = 8, CB = 20, AD = 20.
Скорость течения реки Vт = 2 км/ч
Путь по течению:
Расстояние S₁ = 3 км
Скорость V₁ = Vc + Vт = (v + 2) км/ч
Время t₁ = S₁/V₁ = 3/(v + 2) часов
Путь против течения:
Расстояние S₂ = 2 км
Скорость V₂ = Vc - Vт = (v - 2) км/ч
Время t₂ = S₂/t₂ = 2/(v - 2) ч.
Путь в стоячей воде :
Расстояние S₃ = 6 км
Скорость V₃ = Vc = v км/ч
Время t₃ = 6/v ч.
По условию : t₁ + t₂ = t₃ ⇒ уравнение:
3/(v+2) + 2/(v - 2) = 6/v | * v(v +2)(v - 2)
v≠ - 2 ; v≠ 2 ; v ≠0
3v(v-2) + 2v(v+2) = 6(v+2)(v-2)
3v² - 6v + 2v² + 4v = 6(v² - 4)
5v² - 2v = 6v² - 24
6v² - 24 - 5v² + 2v = 0
v² + 2v - 24 = 0
D = 2² - 4*1*(-24) = 4 + 96 = 100 = 10²
D>0 - два корня уравнения
v₁ = ( - 2 - 10)/(2*1) = -12/2 = - 6 не удовл. условию задачи
v₂ = ( - 2 + 10)/(2*1) = 8/2 = 4 (км/ч) Vc
Проверим:
3/(4+2) + 2/(4-2) = 3/6 + 2/2 = 0,5 + 1 = 1,5 (ч.) t₁ + t₂
6/4 = 3/2 = 1,5 (ч.) t₃
t₁ + t₂ = t₃ = 1.5 (ч.)
ответ : Vc = 4 км/ч .