Объяснение:
1.
а) a^2+3 / a^3 - 3-a / 3a = 3a^2+9-3a^2+a^3 / 3a^3 = a^3+9 / 3a^3
б) x / x-1 +x / x+1 = x^2+x+x^2-x / x^2-1 = 2x^2 / x^2-1
в) x / x-2y - 4y^2 / x^2-2xy = x / x-2y - 4y^2 / x(x-2y) = x^2 - 4y^2 / x(x-2y) = (x-2y)*(x+2y) / x(x-2y) = x+2y / x
г) 2a + b - 4ab / 2a+b = (2a(2a+b) + b(2a+b) - 4ab) / 2a+b = (4a^2+2ab+2ab+b^2 - 4ab) / 2a+b = 4a^2+b^2 / 2a+b = (2a+b)*(2a-b) / 2a+b = 2a-b
а) a+4 / 4a - a-2 / a^2 = a^2+4a-4a+8 / 4a^3 = a^2+8 / 4a^3
б) 3x / x+3 + 3x / x-3 = 3x^2-9x+3x^2+9x / x^2-9 = 6x^2 / x^2-9
в) 9x^2 / 3xy-y^2 - y / 3x-y = 9x^2 / y(3x-y) - y / 3x-y = 9x^2-y^2 / x(3x-y) = (3x-y)*(3x+y) / x(3x-y) = 3x+y / x
г) a-3b+6ab / a-3b = (a^2-3ab-3ab+9b^2+6ab) / a-3b = a^2+9b^2 / a-3b = (a+3b)*(a-3b) / a-3b = a+3b
1. Найдите значение выражения:
а) 0,6(4×5 −14) −0,4(5×5−1)=12-8,4-10+0,4=-6
б) 1,2(1,2 −7) −1,8(3 −1,2)=1,44-8,4-5,4+2,16=-10,2
2. Приведите подобные слагаемые:
а) 8в + 12а −21в + а=-13b+13a
б) 9а + 17в−30а + 4в=-21a+21b
3. Раскройте скобки и приведите подобные слагаемые:
а) −(3с + 5х) −(9с −6х)=-3c-5x-9c+6x=-12c+x
б) (2а −7у) − (5а −7у)=2a-7y-5a+7y=-3a
4. Решите уравнение:
а) (6х + 1) −(3 −2х) = 14
6x+1-3+2x=14
8x-2=14
8x=14+2=16
x=16÷8=2
б) 9 −(8х −11) = 12
9-8x+11=12
20- 8x=12
-8x=12-20=-8
x=-8÷(-8)
x=1
5. Упростите выражение:
а) 19у + 2(3 −4у) + 11у=19y+6-8y+11y=22y+6
б) 33 −8(11в −1) −2в=33-88b+8-2b=41-90b