М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
plenkinanatash
plenkinanatash
13.04.2020 09:27 •  Алгебра

41с во 2 степени + 62с в 3 степени - 99- 42c во второй плюс 38 с в 3 степени

👇
Ответ:
Я короче дал не правильный ответ
запутался в числах
соре
4,5(72 оценок)
Открыть все ответы
Ответ:
murplushka
murplushka
13.04.2020

y = x³ - 4x²

Найдём производную :

y' = (x³)' - 4(x²)' = 3x² - 8x

Найдём критические точки, для этого приравняем производную к нулю.

y' = 0

3x² - 8x = 0

x(3x - 8) = 0

x_{1}=0\\\\x_{2}=2\frac{2}{3}

Отметим критические точки на числовой прямой и выясним знаки производной на промежутках, на которые эти точки разбивают числовую прямую .

y'(x)         +                       -                                 +

____________0___________2 2/3_____________

y(x)        ↑                        ↓                                ↑

На промежутках (- ∞ ; 0]  и  [2 2/3 ; + ∞) -функция возрастает

На промежутке [0 ; 2 2/3] - функция уюывает

4,6(60 оценок)
Ответ:
123443210968687
123443210968687
13.04.2020
y(x)=sin4x*cos3x-cos4x*sin3x=sin(4x-3x)=sin(x)

наименьшим положительным периодом функции y(x)=sin(x) есть 2\pi
----------------------------------
наименьший положительный период ctg(x) равен \pi
тогда у нас
y(x)=y(x+\pi)
пусть T - искомый период, тогда

3ctg(\frac{x}{3})+8=3ctg(\frac{x+T}{3})+8=3ctg(\frac{x}{3}+\frac{T}{3})+8=3ctg(\frac{x}{3}+\pi)+8

имеем, что \frac{T}{3}=\pi

окончательно T=3\pi

3 перед котангенсом вытягивает график в три раза вдоль оси ОУ по отношению к графику просто котангенса не влияя на период
8-ка - сдвигает график 3ctg(\frac{x}{3}) относительно оси OX на 8 единиц вверх, также не влияя на период
----------------------------------

проанализируем какова область определения функции:
1-cos(5x) \neq 0

cos(5x) \neq1

5x \neq 2\pi n, n\in Z

x \neq \frac{2\pi n}{5}, n\in Z

Как видим, запрещенные значения x - это симметричное относительно начала координат множество точек,
что означает, что и область определения функции y(x) также симметрична относительно начала координат. Это означает, что есть смысл проверять функцию на парность, дальше.

y(-x)=\frac{3sin(2*(-x))}{1-cos(5*(-x))}=\frac{3sin(-2x)}{1-cos(-5x)}=\frac{-3sin(2x)}{1-cos(5x)}=-\frac{3sin(2x)}{1-cos(5x)}=-y(x)

Функция оказалась непарной
4,7(45 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ