М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
misspolina967
misspolina967
18.04.2020 13:14 •  Алгебра

99 , 11 клас, разобраться в этом бреде! объем шара, как известно, (4/3)*pi*(r^3). объем куба (2*r)^3 = 8*(r^3). а объем чего же тогда получаю я, когда решаю определенный интеграл: объем той фигуры, которая получится, если вынуть сферу из куба? но ее объем должен быть приблизительно в 2 раза объем фигуры, которая получится, если разрезать сферу по оси y и соединить противоположными концами? но ее объем равен объему сферы, он тоже в 2 раза больше. я знаю, что объем шара выводится так: но я не могу понять, в чем разница: брать r^2-x^2 или просто x^2, мне кажется, объемы в этом случае должны быть равными, а они отличаются в 2 раза. , объясните мне, чего я не

👇
Ответ:
inferatu777
inferatu777
18.04.2020
ответ  в  прикрепленном  файле 
99 , 11 клас, разобраться в этом бреде! объем шара, как известно, (4/3)*pi*(r^3). объем куба (2*r)^3
4,8(23 оценок)
Открыть все ответы
Ответ:
зимлен
зимлен
18.04.2020
|x^2 - 3x| + 2x - 6 <= 0
Нам нужно определить, на каких промежутках выражение под модулем отрицательно, на каких положительно, и на каких равно 0
x^2 - 3x = 0
x(x - 3) = 0
x1 = 0; x2 = 3
1) В точках x1 и x2 модуль равен 0
x1 = 0: 0 + 0 - 6 < 0 - подходит
x2 = 3: 0 + 2*3 - 6 = 0 - подходит.
2) При 0 < x < 3 будет x^2 - 3x < 0, поэтому |x^2 - 3x| = 3x - x^2
3x - x^2 + 2x - 6 <= 0
-x^2 + 5x - 6 <= 0
x^2 - 5x + 6 >= 0
(x - 2)(x - 3) >= 0
x <= 2 U x >= 3
С учетом заданного промежутка 0 < x < 3 получаем
0 < x <= 2
3) При x < 0 U x > 3 будет x^2 - 3x > 0, |x^2 - 3x| = x^2 - 3x
x^2 - 3x + 2x - 6 <= 0
x^2 - x - 6 <= 0
(x + 2)(x - 3) <= 0
-2 < x < 3
С учетом заданного промежутка x < 0 U x > 3 получаем
-2 < x < 0
Итоговое решение:
-2 < x < 0 U x = 0 U 0 < x < 2 U x = 3
ответ: -2 < x < 2 U x = 3
4,5(40 оценок)
Ответ:
irajuta82
irajuta82
18.04.2020
|x^2 - 3x| + 2x - 6 <= 0
Нам нужно определить, на каких промежутках выражение под модулем отрицательно, на каких положительно, и на каких равно 0
x^2 - 3x = 0
x(x - 3) = 0
x1 = 0; x2 = 3
1) В точках x1 и x2 модуль равен 0
x1 = 0: 0 + 0 - 6 < 0 - подходит
x2 = 3: 0 + 2*3 - 6 = 0 - подходит.
2) При 0 < x < 3 будет x^2 - 3x < 0, поэтому |x^2 - 3x| = 3x - x^2
3x - x^2 + 2x - 6 <= 0
-x^2 + 5x - 6 <= 0
x^2 - 5x + 6 >= 0
(x - 2)(x - 3) >= 0
x <= 2 U x >= 3
С учетом заданного промежутка 0 < x < 3 получаем
0 < x <= 2
3) При x < 0 U x > 3 будет x^2 - 3x > 0, |x^2 - 3x| = x^2 - 3x
x^2 - 3x + 2x - 6 <= 0
x^2 - x - 6 <= 0
(x + 2)(x - 3) <= 0
-2 < x < 3
С учетом заданного промежутка x < 0 U x > 3 получаем
-2 < x < 0
Итоговое решение:
-2 < x < 0 U x = 0 U 0 < x < 2 U x = 3
ответ: -2 < x < 2 U x = 3
4,4(6 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ