Объяснение:
Вопрос 1.
Такую функцию называют обратимой.
Обратимой называется функция в которой произвольному значению функции соответствует единственное значение аргумента.
Вопрос 2.
Исходная обратимая функция и функция, полученная из нее путем замены x на y и y на x, называются обратными.
у=5х+2
х=5у+2
5у=х-2
у=0,2(х-2)
Вопрос 3.
Строго монотонная функция обратима.
Да, является.
Вопрос 4.
Обратимые функции:
у=5х+2
у=х⁵
у=х³+1
Если найти производную каждой фцнкции, то выяснится, что функции монотонны, а заначит обратимы.
Замена:
Имеем квадратичную функцию , графиком которой является парабола с ветвями, направленными вверх.
Найдем возможные точки пересечения параболы с осью абсцисс.
Для этого решим квадратное уравнение:
Найдем дискриминант данного уравнения:
Имеем , значит данное уравнение имеет ровно 2 корня:
Имеем две точки пересечения параболы с осью абсцисс.
Пусть . Тогда
. Имеем неверное неравенство. Следовательно, при всех значениях параметра
имеем
.
Тогда квадратичная функция будет меньше 0 при
Последнее можно записать так:
Обратная замена:
Если , то имеем:
Решением такой системы неравенств является
Если , то имеем:
Решением такой системы неравенств является
Если , то имеем:
Решением такой системы неравенств является интервал
2)0,9:0,45=2
3)1,5:3=0,5
4)0,242:0,11=2,2
5)0,5+2=2,5
6)2,5+0,5=3
7)3+2,2=5,2
8)2,3-1,26=1,04
9)5,2:1,04=5