Пусть x число квартир в подъезде, а однозначный номер стоит s рублей. Поскольку в доме есть трёхзначные номера (они упомянуты) и нет четырёхзначных (они не упомянуты), то число 3x трёхзначно, поэтому x двузначно. Рассмотрим два случая:
1) Пусть число 2x двузначно. Тогда во втором подъезде все номера двузначны, поэтому собрано 2xs руб. В третьем подъезде (99 2x) двузначных номеров и 3x 99 трёхзначных, поэтому в нём собрано 2s(99 2x) + 3s(3x 99) руб. По условию 1,2 2sx = 2s(99 2x) + 3s(3x 99), откуда 2,4x = 5x 99 и x не целое.
2) Пусть число 2x трёхзначно. Тогда во втором подъезде (99 2x) двузначных и (3x 99) трёхзначных номеров, а в третьем x трёхзначных номеров, откуда 1,2(4x 99) = 3x, и x = 66. Проверка показывает, что 2x и 3x действительно трёхзначны.
ответ: 66 квартир.
С применением степени
(квадрат и куб) и дроби
Квадратный корень
sqrt(x)/(x + 1)Кубический корень
cbrt(x)/(3*x + 2)С применением синуса и косинуса
2*sin(x)*cos(x)Арксинус
x*arcsin(x)Арккосинус
x*arccos(x)Применение логарифма
x*log(x, 10)Натуральный логарифм
ln(x)/xЭкспонента
exp(x)*xТангенс
tg(x)*sin(x)Котангенс
ctg(x)*cos(x)Иррациональне дроби
(sqrt(x) - 1)/sqrt(x^2 - x - 1)Арктангенс
x*arctg(x)Арккотангенс
x*arсctg(x)Гиберболические синус и косинус
2*sh(x)*ch(x)Гиберболические тангенс и котангенс
ctgh(x)/tgh(x)Гиберболические арксинус и арккосинус
x^2*arcsinh(x)*arccosh(x)Гиберболические арктангенс и арккотангенс
x^2*arctgh(x)*arcctgh(x)
V - обозначает путь скорее всего от латинского слова velocitas - скорость.
Надеюсь пойдёт)