Решение системы уравнений (1; -3).
Объяснение:
Решите методом сложения систему уравнений:
7x-y=10
5x+y=2
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, коэффициенты при у одинаковые и с противоположными знаками.
Складываем уравнения:
7х+5х-у+у=10+2
12х=12
х=1
Подставим значение х в любое из двух уравнений системы и вычислим у:
7x-y=10
-у=10-7х
у=7х-10
у=7*1-10
у= -3
Решение системы уравнений (1; -3)
1. В) - подстановкой (подставляем вместо x 2 и -1 и смотрим, верно ли уравнение).
2. x2=4 // 4 в левую часть
x2-4=0 // раскладываем на множители по формуле разности квадратов
(x-2)(x+2)=0
x=2
x=-2
Два корня: 2 и -2.
3x-6-3(x-2)=0 // раскрываем скобки
3x-6-3x+6=0 // приводим подобные
0=0
Бесконечно много корней (при любом x уравнение будет верно)
|x|+4=0
Корней нет, т.к. |x|>0 (модуль) и 4>0.
Соответственно, 2x-(x-)=0 - один корень (хотя при записи задачи ошибка)
3. 15-x=2(x-30) // раскрываем скобки
15-x=2x-60 // иксы в правую сторону, числа в левую
75=3x // меняем стороны, делим обе стороны на 3
x=25
ответ: 25.
всегда