1) В треугольнике против большей стороны лежит больший угол . В треугольнике ABC большая сторона AB против этой стороны лежит <C, значит <C = 120° . Сумма углов в треугольнике равна 180° , значит третий неизвестный угол треугольника равен 180 - (120 + 40) = 180 - 160 = 20°. AC - меньшая сторона треугольника против неё лежит <B , значит <B = 20° Против стороны BC лежит <A, значит < A = 40°.
2) <A = 50° , <B = x , <C = 12x Сумма углов в треугольнике равна 180° , значит 50 + x + 12x = 180 13x = 130 x = 10° - <B 12 * 10 = 120° - < C
3) A| | | D | C| B
<C = 90° , <B = 35° Сумма острых углов в прямоугольном треугольнике равна 90°, значит <A = 90° - <B = 90° - 35° = 55° В треугольнике ACD , <ADC = 90° , так как CD - высота <ACD = 90° - <A = 90° - 55° = 35° ответ : 35° , 55° , 90°
1)если f(-x) = f(x), то f(x) -чётная; если f(-x) = -f(x), то f(x) - нечётная. Переведём на "простой язык": Если вместо "х" в функцию подставим "-х" и при этом функция не изменится, то всё. данная функция - чётная. Если вместо "х" в функцию подставим "-х" и при этом функция только поменяет знак, то всё. данная функция - нечётная. итак, наши примеры: а) эта функция - ни чётная, ни нечётная в)(х-4)(х-2) = х^2 -6x +8. данная функция у = х. Это нечётная функция. с) это чётная функция. d) это ни чётная, ни нечётная функция. е) это нечётная функция ( числитель не помняет знак, а знаменатель поменяет, значит, вся дробь поменяет знак. 2) у = -2х+1 (у = 1 это прямая параллельная оси х. Симметричные точки относительно этой прямой поменяют знак ординаты)
0.3x-0.9-3x+4.5=4.2x-3.3
0.3x-3x-4.2x=-3.3+0.9-4.5
-6.9x=-6.9
x=-6.9 : (-6.9)
x=1