60 м и 50 м.
Объяснение:
Длина забора - это периметр прямоугольника. Сумма длины и ширины - половина периметра, 220 : 2 = 110 (м).
Пусть ширина прямоугольника равна х м, тогда длина прямоугольника равна (110 - х) м.
Зная, что площадь равна 3000 м², составим и решим уравнение:
х(110 - х) = 3000
- х² + 110х - 3000 = 0
х² - 110х + 3000 = 0
D = 12100 - 12000 = 100
x1 = (110+10)/2 = 60;
x2 = (110-10)/2 = 50.
Если длина больше ш рины, то она равна 60 м, тогда
110 - 60 = 50 (м) - ширина прямоугольника.
ответ: 60 м и 50 м.
x=-5
Объяснение:
(х² -25)² +(x² +3x -10)²=0
1) х² -25= (x-5)(x+5)
2) найдем корни уравнения x² +3x -10=0
D=3²+4*10=9+40=49
√D=7
x₁=(-3-7)/2=-5
x₂=(-3+7)/2=2
значит выражение x² +3x -10 можно записать в виде (x+5)(x-2)
3) значит исходное уравнение можно переписать в виде
((x-5)(x+5))²+((x+5)(x-2))²=0
выносим за скобки (x+5)²
(x+5)²((x-5)²+(x-2)²)=0
либо (х+5)²=0 и тогда x=-5
либо ((x-5)²+(x-2)²)=0
раскрываем скобки
x²-10x+25+x²-4x+4=0
2x²-14x+29=0
D=14²-4*2*29=4(7²-58) <0 решения нет
На самом деле сразу видно, что уравнение (x-5)²+(x-2)²=0 не имеет решения, так как (x-5)²≥0 и (x-2)²≥0, причем первое уравнение обращается в 0 при х=5, а второе при х=2, то есть они обращаются в 0 при разных значениях х, поэтому их сумма всегда строго > 0