Объяснение:
Сначала найдём вероятность обратного события, а именно "обе извлечённые детали — не стандартны".
Всего нестандартных деталей 10 - 8 = 2 штуки. Соответственно, есть только один извлечь именно их.
Всего же извлечь две детали из 10 будет 10!/(2!(10-2)!) = 10!/(2!8!) = 10*9/2 = 45.
Таким образом, вероятность события "обе извлечённые детали — не стандартны" составляет 1/45.
Тогда вероятность искомого события равна 1 - 1/45 = 44/45.
ответ: вероятность того, что среди наудачу извлечённых двух деталей будет хотя бы одна стандартная, составляет 44/45.
1) y=3x^2-12x
0=3x^2-12x
3x^2-12x= 0
3x*(x-4)=0
x*(x-4) = 0
x=0
x-4=0
x=0
x=4
x1=0; x2=4
По графіку 1:
Корені (0;0) (4;0)
Область визначення x € R
Мінімум (2;-12)
Перетин з віссю ординат (0;0)
2) y=-2x³+5,2x
0=-2x³+5,2x
-2x³+5,2x= 0
-2x³+26/5x=0
-x*(2x²-26/5)=0
x*(2x²-26/5)=0
x=0
2x²-26/5=0
x=0
x=-√65/5
x=√65/5
x1=-√65/5; x2=0; x3=√65/5
x1≈-1,61245; x2=0; x3≈1,61245
По графіку 2:
Корені (-√65/5;0) (0;0)
(√65/5;0)
Область визначення x € R
Мінімум (-√195/15; -52√195/225
Максимум (√195/15; 52√195/225)
Перетин з віссю ординат (0;0)
3)y=-x²+6x-9
0=-x²+6x-9
0+x²-6x+9=0
(x-3)²=0
x-3=0
x=3
По графіку 3:
Корені (3;0)
Область визначення x € R
Максимум (3;0)
Перетин з віссю ординат (0;-9)
4)y=-x²-2,8x
0=-x²-2,8x
-x²-2,8x=0
-x²-14/5x=0
-x*(x+14/5)=0
x*(x+14/5)=0
x=0
x+14/5=0
x=0
x=-14/5
x1=-14/5 x2=0
x1=-2,8 x2=0
По графіку 4:
Корені (-14/5;0) (0;0)
Область визначення x € R
Максимум (-7/5; 49/25)
Перетин з віссю ординат (0;0)
sinx\vee a,
cosx\vee a,
tgx\vee a,
ctgx\vee a,
где \vee – один из знаков <,\;>,\;\leq,\;\geq, a\in R.
Вы должны прежде, конечно, хорошо ориентироваться в тригонометрическом круге и уметь решать простейшие тригонометрические уравнения (часть I, часть II).
круг тригонометрический
Кстати, умение решать тригонометрические неравенства может пригодиться, например, в заданиях №11 ЕГЭ по математике.
Сначала мы рассмотрим простейшие тригонометрические неравенства с синусом и косинусом. Во второй части статьи – с тангенсом, котангенсом.
Пример 1.
Решить неравенство: cosx<\frac{1}{2}.
Решение:
Отмечаем на оси косинусов \frac{1}{2}.
Все значения cosx, меньшие \frac{1}{2}, – левее точки \frac{1}{2} на оси косинусов.
87
Отмечаем все точки (дугу, точнее – серию дуг) тригонометрического круга, косинус которых будет меньше \frac{1}{2}.
ен
Полученную дугу мы проходим против часовой стрелки (!), то есть от точки \frac{\pi}{3} до \frac{5\pi}{3}.
Обратите внимание, многие, назвав первую точку \frac{\pi}{3}, вместо второй точки \frac{5\pi}{3} указывают точку -\frac{\pi}{3}, что неверно!
Становится видно, что неравенству удовлетворяют следующие значения x:
\frac{\pi}{3}+2\pi n
Следите за тем, чтобы «правая/вторая точка» была бы больше «левой/первой».
Не забываем «накидывать» счетчик 2\pi n,\;n\in Z.
Вот так выглядит графическое решение неравенства не на тригонометрическом круге, а в прямоугольной системе координат:
тригонометрические неравенства
Пример 2.
Решить неравенство: cosx\geq -\frac{\sqrt2}{2}.
Решение:
Отмечаем на оси косинусов -\frac{\sqrt2}{2}.
Все значения cosx, большие или равные -\frac{\sqrt2}{2} – правее точки -\frac{\sqrt2}{2}, включая саму точку.
Тогда выделенные красной дугой аргументы x отвечают тому условию, что cosx\geq -\frac{\sqrt2}{2}.
г-\frac{3\pi}{4}+2\pi n\leq x\leq \frac{3\pi}{4}+2\pi n,\; n\in Z.
Пример 3.
Решить неравенство: sinx\geq -\frac{\sqrt3}{2}.
Решение:
Отмечаем на оси синусов -\frac{\sqrt3}{2}.
Все значения sinx, большие или равные -\frac{\sqrt3}{2}, – выше точки -\frac{\sqrt3}{2}, включая саму точку.
67
«Транслируем» выделенные точки на тригонометрический круг:
6 -\frac{\pi}{3}+2\pi n \leq x\leq \frac{4\pi}{3}+2\pi n,\;n\in Z
Пример 4.
Решить неравенство: sinx<1.
Решение:
Кратко:
л
\frac{\pi}{2}+2\pi n
или все x, кроме \frac{\pi}{2}+2\pi n,\;n\in Z.
Пример 5.
Решить неравенство: sinx\geq 1.
Решение:
Неравенство sinx\geq 1 равносильно уравнению sinx=1, так как область значений функции y=sinx – [-1;1].
78н
x=\frac{\pi}{2}+2\pi n,\;n\in Z.
Пример 6.
Решить неравенство: sinx<\frac{1}{3}.
Решение:
Действия – аналогичны применяемым в примерах выше. Но дело мы имеем не с табличным значением синуса.
Здесь, конечно, нужно знать определение арксинуса.
89
\pi -arcsin\frac{1}{3}+2\pi n
Если не очень понятно, загляните сюда –>+ показать