Удобно записать в виде таблицы всевозможные простые числа, отметив при этом участвующие в их записи цифр (картинка). Видно, что цифры 2, 4 и 5 могут участвовать всего в двух числах, причем во всех случаях одно из чисел - вариант ответа.Предположим, что числа 2 нет в расстановке. Тогда, цифра 2 записывается в составе числа 23. Оставшиеся числа 41 и 5 отлично удовлетворяют условию. Вывод? число 2 может отсутствоватьПредположим, что числа 41 нет в расстановке.Тогда, цифра 4 записывается в составе числа 43. Остались числа 2 и 5. Но цифра 1 осталась незадействованной. Значит, без участия числа 41 такая расстановка невозможна.ответ: 41 Детальніше - на -
7х^2-5х=7х-5
7х^2-5х-7х+5=0
7х^2-12х+5=0
Найдем дискриминант:
D=(-12)^2-4*7*5=4
x1=(12-2)/(2*7)=5/7
x2=(12+2)/(2*7)=1
При х=5/7, у=0
При х=1, у=2