х во второй - х^2
Надо перенести все влево, поменяв при этом знаки, на противоположные.
То есть: х^2-3x+2>0.
Теперь надо прировнять полученное выражение к нулю (таким образом, мы найдем те значения х, при которых данное выражение равно нулю).
Итак: х^2-3x+2=0.
Мы получили приведенное квадратное уравнение (приведенное, это когда коэффициэнт при х равен 1).
Это уравнение можно решить двумя путями:
Первый - по теореме Виета
Второй - через D (дискриминант).
Будем решать первым это в данном случае проще и удобнее, потому что это приведенное квадратное уравнение):
Теорема Виета в общем виде:
x1+x2=-b
x1*x2=c
Подставим значения в эту формулу:
x1+x2=3
x1*x2=2 следовательно корни уравнения: 1 и 2.
Если при этих значениях уравнение х^2-3x+2 равно нулю, то х не может принимать эти значение, так как по условию х^2-3x+2 больше нуля.
Поэтому х не равен 1 и 2.
Это значит, что х не может принимать только эти два значения.
Объяснение:
А
А) z1 = (2a+b)(2-i) = (4a+2b) - (2a+b)i
Комплексно
Комплексно сопряжённое:
~z1 = (4a+2b) + (2a+b)i
z2
z2 = (a+b+1) - (2a+2)i
Если
Если ~z1 = z2, то:
{ 4a + 2b = a + b + 1
{ 2a + b = - (2a + 2) = -2a - 2
Приводим
Приводим подобные:
{ 3a + b = 1
{ 4a + b = -2
Из
Из 2 уравнения вычитаем 1 уравнение:
a
a = -3
b
b = 1 - 3a = 1 - 3(-3) = 10
Б
Б) z3 = -3 + i; z4 = 2 - 3i
z4
z4 - z3 = 2 - 3i + 3 - i = 5 - 4i
(z4 - z3)/z4 = (5-4i)/(2-3i) = (5-4i)(2+3i) / ((2-3i)(2+3i)) =
= (10-8i+15i+12) / (4+9) = (22+7i)/13
Re
Re ((z4-z3)/z4) = 22/13
Im
Im ((z4-z3)/z4) = 7/13
2. Узнаем, сколько всего килограммов яблок 17 + 5,75 = 22,75 кг или 22 килограмма 750 граммов
ответ: 25 кг 750 г