Площадь прямоугольника находится по формуле:
S = a * b,
где a – длина, b – ширина прямоугольника.
Если одна величина больше (или меньше) другой величины на n-единиц, то она равна сумме (или разности) второй величины и числа n, таким образом, если ширина прямоугольника на 6 см меньше, чем его длина, то ширину можно выразить равенством:
b = a – 6.
Из условия известно, что:
a * b = 40, тогда:
a * (a – 6) = 40.
Решим полученное квадратное уравнение через дискриминант:
a^2 – 6 * a – 40 = 0.
D = (-6)^2 – 4 * 1 * (-40) = 36 + 160 = 196.
a1 = (- (-6) + 14)/(2 * 1) = (6 + 14)/2 = 20/2 = 10;
a2 = (- (-6) - 14)/(2 * 1) = (6 - 14)/2 = - 8/2 = - 4 – данный вариант не имеет смысла, так как длина стороны многоугольника не может быть отрицательной.
Таким образом, длина прямоугольника равна 10 см.
Найдем ширину прямоугольника:
b = a – 6 = 10 – 6 = 4 (см).
ответ: a = 10 см; b = 4 см.
Объяснение:
Пусть скорость первого х км/ч., тогда скорость второго (х+7)км/ч, превратим эту скорость в м/мин. Известно, в 1км 1000м, в часе 60мин., поэтому
1км/ч=1000м/60мин=50/3(м/мин.)
По условию стартовали одновременно, разница в расстоянии составляла 500м, когда первый пробежал 15минут со своей скоростью, а второй 10 мин. (15-5=10/мин./)со своей . Путь первого составил х*(50/3)*15=750х/3; а второго (х+7)*(50/3)*10=(х+7)*500/3. По условию задачи составим и решим уравнение.
(х+7)*500/3-750х/3=500; (х+7)*500-750х=500*3; 500*(х+7-3)-750х=0;
500*(х+4)-750х=0; 500х+2000-750х=0; 750х-500х=2000; 250х=2000; х=8
Значит, скорость первого бегуна 8км/ч или 8*50/3=400/3=133 и 1/3 м/мин.