Решение Пусть скорость первого лыжника будет х (км/ч). Тогда скорость второго лыжника (х+2) (км/ч). Время первого лыжника 20/х (км/ч), а второго 20/(х+2) (км/ч); а так как второй расстояние на 20мин, т.е. на 1/3 часа быстрее, то имеем уравнение такого вида: 20/x – 20/(x + 2) = 1/3 20/x – 20/(x + 2) - 1/3 = 0 умножим на 3 60/x – 60/(x + 2) – 1 = 0 60(х+2) - 60х – x*(x + 2) = 0 х² + 2x – 120 = 0 D=b² - 4ac = 4 + 4*1*120 = 484 x= (- 2 + 22)/2 = 10 10 (км/ч) - скорость первого лыжника 10 + 2 = 12 (км/ч) — скорость второго лыжника ответ: 10 км/ч; 12 км/ч
Решение Пусть скорость первого лыжника будет х (км/ч). Тогда скорость второго лыжника (х+2) (км/ч). Время первого лыжника 20/х (км/ч), а второго 20/(х+2) (км/ч); а так как второй расстояние на 20мин, т.е. на 1/3 часа быстрее, то имеем уравнение такого вида: 20/x – 20/(x + 2) = 1/3 20/x – 20/(x + 2) - 1/3 = 0 умножим на 3 60/x – 60/(x + 2) – 1 = 0 60(х+2) - 60х – x*(x + 2) = 0 х² + 2x – 120 = 0 D=b² - 4ac = 4 + 4*1*120 = 484 x= (- 2 + 22)/2 = 10 10 (км/ч) - скорость первого лыжника 10 + 2 = 12 (км/ч) — скорость второго лыжника ответ: 10 км/ч; 12 км/ч
а) sin(5·π/8) > 0 - положительный
б) sin(-π/7) < 0 - отрицательный
Объяснение:
Функция sinα имеет знак:
плюс в 1 и 2 четвертях; минус - в 3 и 4 четвертях.Определить знак чисел: а) sin(5·π/8); б) sin(-π/7).
а) π/2 < 5·π/8 < π и во второй четверти знак синуса положительный, то
sin(5·π/8)>0 - знак положительный;
б) -π/2 < -π/7 < 0 и в четвёртой четверти знак синуса отрицательный, то
sin(-π/7) < 0 - знак отрицательный.