Для того, чтобы найти корни многочлена, надо приравнять его к нулю, а затем разложить на множители левую часть: x + x³ - x² + x - 2 = 0 (x - 1)(x + 2)(x² + 1) = 0 или x - 1 = 0 или x + 2 = 0 или x² + 1 = 0 x = 1 x = - 2 решений нет ответ: 1 ; - 2
Обозначим скорость при движении из А в Б через Х. Тогда на путь в 100 км (из А в Б) потрачено время 100/Х. На обратный путь потрачено время = 6 часов + 100/(Х+15). Знаем, что 100/Х=6+100/(Х+15) Приводим к общему знаменателю и получаем, что 100(Х+15)=6Х(Х+15)+100Х 100Х+1500=6Х^2+90Х+100Х Решаем квадратное уравнение 6Х^2+90Х-1500=0 и находим Х=10 (км/час, первоначальная скорость при движении из А в Б). Скорость при движении из Б в А = 10+15=25 км/час. Проверка: 100км:10 км/час=10 часов "туда" и 100/25=4 часа движения + 6 часов остановки = всего 10 час "обратно".
Обозначим скорость при движении из А в Б через Х. Тогда на путь в 100 км (из А в Б) потрачено время 100/Х. На обратный путь потрачено время = 6 часов + 100/(Х+15). Знаем, что 100/Х=6+100/(Х+15) Приводим к общему знаменателю и получаем, что 100(Х+15)=6Х(Х+15)+100Х 100Х+1500=6Х^2+90Х+100Х Решаем квадратное уравнение 6Х^2+90Х-1500=0 и находим Х=10 (км/час, первоначальная скорость при движении из А в Б). Скорость при движении из Б в А = 10+15=25 км/час. Проверка: 100км:10 км/час=10 часов "туда" и 100/25=4 часа движения + 6 часов остановки = всего 10 час "обратно".
x + x³ - x² + x - 2 = 0
(x - 1)(x + 2)(x² + 1) = 0
или x - 1 = 0 или x + 2 = 0 или x² + 1 = 0
x = 1 x = - 2 решений нет
ответ: 1 ; - 2