Правильное условие такое:
Мяч брошен вертикально вверх с начальной скоростью 24 м/с. Зависимость расстояния h (в метрах) от мяча до земли от времени полета выражается формулой h = 24t − 5t² .
Дано:
V₀=24м/с
Найти: h; t
1) Скорость - это производная от расстояния.
V = h'
V = ( 24t − 5t²)'
V = 24 - 10t
Получили формулу, которая показывает зависимость скорости V
(в м/с) от времени полета t .
2) V = 24 - 10t
V - конечная скорость, которая в момент достижения мячом наибольшей высоты равна 0.
Решим уравнение и найдем время t.
0 = 24 - 10t
10t = 24
t = 24:10
t = 2,4
t=2,4 с - время полёта мяча снизу до наибольшей высоты.
3) Находим значение наибольшей высоты, на которую поднимется мяч за t=2,4c.
h=24t-5t² при t=2,4c.
h = 24·2,4 - 5·2,4² = 2,4·(24-5·2.4) = 2,4·(24-12) = 2,4·12= 28,8 м
4) Найдем tₓ все время полета от броска с земли до момента падения его на землю
tₓ = 2t = 2 · 2,4 = 4,8c
ответ: 28,8 м; 4,8c
Всего 60 трехзначных чисел
На первое место можно разместить любую из пяти цифр, пять На второе место можно разместить любую из четырех цифр, четыре На третье место любую из оставшихся трех цифр, три На все три места результаты выбора умножаем.
5·4·3=60
а) кратны трем те числа, у которых сумма цифр кратна трем
Например, используя цифры 1; 2; 3, сумма цифр которых 1+2=3=6 кратна 3 можно составит шесть чисел, кратных 3:
123; 132;321;312;231;213
Возможностей 4:
1+2+3=6 кратно 3
2+3+4= 9 кратно 3
3+4+5=12 кратно 3
1+3+5=9 кратно 3
В каждой возможности 6 чисел. Всего 24 числа.
б) Кратны четырем те трехзначные числа, у которых две последние цифры кратны 4. Возможны варианты:
*12
*24
*32
*52
На первое место можно разместить любую из оставшихся трех цифр, тремя Всего 3·4=12 чисел
в) кратных 5:
12:
на последнем месте обязательно располагается цифра 5 ( числа кратные 5 оканчиваются на 5 или на 0, 0 у нас нет). На первое место можно выбрать любую из четырех оставшихся цифр - четыре на второе место любую из оставшихся трех - три Всего Подробнее - на -
{y= 2x-6
Просто подбором